
1

2

ISSN 2229-6107 www.ijpast.in

 Vol 10,Issue 4.Dec 2020

SUPPORT VECTOR MACHINES, A BI-OBJECTIVE HYPER-

HEURISTIC, FOR THE CYBER-SAFETY OF LARGE DATA

SETS

Mr. D Srikar, Mr. USV Vinod, Mr. JV Rama Kumar,

ABSTRACT

Is a major issue, and that this fact poses a significant challenge to the academic community. In order to deal with the security issues that

come with large data, machine learning techniques have been proposed as a possible solution. Support vector machines (SVMs) have been

one of the most popular of these methods. Obtained impressive results on a wide range of classification tasks. However, in order to set up an

efficient SVM, the user must first de ne the appropriate SVM con gyration in advance—a difficult operation that calls for specialized

expertise and a great deal of trial and error. Here, we provide a formalization of the SVM configuration procedure as a bi-objective

optimization problem, with accuracy and model complexity as two competing goals. New problem-domain-agnostic hyper-heuristic framework

for bi-objective optimization is proposed. The first ever hyper-heuristic for this issue has been created just now. To solve this problem, the

authors suggest a hyper-heuristic framework that combines both high-level strategy and heuristics. The search performance is utilized by the

high-level approach to determine which of many possible low-level heuristics should be used to produce a new SVM con gyration. Each of the

low-level algorithms takes a unique approach to successfully searching the space of possible SVM configurations. The proposed framework

adaptively combines the benefits of decomposition- and Pareto-based techniques to approximate the Pareto set of SVM con gyrations,

allowing it to tackle the problem of bi-objective optimization. Two cyber security challenges, Microsoft malware big data classfication and

anomalous intrusion detection, were used to assess the performance of the suggested system. In comparison to its contemporaries and other

algorithms, the acquired results show that the suggested framework is very successful.

I. INTRODUCTION

Rapid progress in areas like mobile, social and the

Internet of Things results in an explosion of data in

digital form. Big has special meaning in this setting.

Data has arisen to characterize these enormous stores

Of digital information. Big data is defined as "very

big and complicated datasets with both structured and

Unstructured data that are created on a regular basis

and need analysis in a very short period of time" [49].

Huge data, as contrast to the big database, refers to

data sets that are either too large, change too rapidly,

or are too complex to be processed by conventional

methods. Three criteria often used to define big data

are scale, diversity, and speed (aka 3Vs). The 3Vs are

the attributes or dimensions of data, with volume

referring to the sheer bulk of the data, variety

indicating that the data came from a wide range of

sources, and velocity referring to the swiftness with

which new data may be created, streamed, and

aggregated [49]. The growth of all three features

(3Vs), not simply the volume alone, is primarily

Responsible for the complexity and difficulty posed

by big data [14]. Researchers, analysts, and business

users may all benefit from the speedier, more

informed judgments made possible by big data [38].

Researchers and practitioners from a wide range of

groups, including academia, business, and

government organizations, have focused on this _led

because of its practical applications and problems

[14].

Assistant Professor
1,2,3

,

Department of Computer Science and Engineering,

Bhimavaram Institute of Engineering and Technology, Bhimavaram, Andhra Predesh, India.

E.mail id: srikar1974@gmail.com, E.mail id: satyamca41@gmail.com

E.mail id: jvramakumar@gmail.com

mailto:srikar1974@gmail.com
mailto:satyamca41@gmail.com

3

The 3Vs and data security were already problems, but

big data introduced a new one. Evidence suggests

that big data may do more than just enhance the

scope of not only exacerbate existing security issues,

but also provide new cyber-security dangers that

must be dealt with in novel and resourceful ways.

When it comes to gaining insights from big data,

security is universally recognized as the top priority

[47]. Threat detection, authentication, and

steganography are all examples of problems in cyber

security that arise with large amounts of data [45].

The biggest problem with large data security is

finding malware.

Malware, an abbreviation for "harmful software," is a

broad category of malicious programmers that may

infect systems and leak sensitive data over networks,

email, or websites [53]. Researchers and

organizations have recognized the problems that may

be created by this malicious software, and therefore

have recognized the need to develop new strategies to

avoid them. Malware is a major concern in big data,

yet surprisingly little study has been conducted in this

field [47]. Methods for detecting malware range from

those based on signatures [22], to those that track

user activity [54], and still others that use patterns

[19], [53]. Existing malware detection approaches,

however, are primarily suggested to deal with small-

scale datasets and are unable to handle enormous data

within a decent length of time. These approaches are

also prohibitively expensive to implement and

maintain and have low success rates [53]. Attackers

may readily circumvent them. Machine learning

(ML) techniques for categorizing unknown patterns

and malicious software have been offered as a

solution to the aforementioned problems [45], [53].

Preliminary results from ML seem good. Outcomes

for categorizing and identifying previously

discovered malicious software.

SVMs, or support vector machines, are a common

ML approach because to their impressive

performance in a wide range of practical settings

[15]. SVMs' high level of performance and scalability

[40] are major factors in their widespread use.

Despite these benefits, an SVM's performance is very

sensitive to its con gyration [9].

The soft margin parameter (or penalty) and the kernel

type and its parameters are often chosen during an

SVM con gyration. There are a number of different

approaches to choosing SVM con gyrations that have

been discussed in the academic literature. The

phrasing of the SVM configuration issue and the

optimization technique used allow for a

categorization of these approaches [9], [12]. The

performance of a created SVM configuration may be

evaluated using k-fold cross-validation if just a single

criterion is utilized, or using many criteria, such as

model correctness and model complexity, in order to

make an informed decision [46]. Grid search

techniques, gradient-based approaches, and meta-

heuristic methods are some of the optimization

strategies that may be used. It's simple to construct

grid search algorithms, and they've proven effective

[13]. However, they come with a high computational

cost, reducing their usefulness for large data issues.

The primary drawbacks of gradient-based approaches

are that they are very dependent on the beginning

point and that the objective function must be

differentiable [4]. To get beyond the limitations of

grid search and gradient-based approaches, meta-

heuristic approaches have been proposed [5, 28, and

56].

It is true that a meta-heuristic method's performance

is very sensitive to the parameters and operators that

are chosen, but this is because these choices are

based on a number of factors. Established as a

difficult and lengthy task.

Furthermore, in most research, a single kernel is

used, and its parameter space is searched. In this

paper, we provide a new bi-objective hyper-heuristic

framework for SVM configuration optimization. Due

to its flexibility and ability to produce highly

competitive con gyrations, hyper heuristics are

superior to other approaches. To _end a powerful

SVM con gyration for big data cyber security, our

proposed hyper-heuristic framework includes a

number of critical components that set it apart from

prior research. As a first step, the framework takes

into account a bi-objective formulation of the SVM

con gyration issue, where accuracy and model

complexity are seen as competing goals. Second, the

framework determines the kernel type, kernel

settings, and soft margin parameter to use. Third, to

_end an approximate Pareto set of SVM con

durations, the hyper-heuristic framework combines

the benefits of decomposition- and Pareto-based

techniques in an adaptable fashion.

II. RELATED WORK
Here, we briefly review other studies that touch on

the same topics of malware detection and meta-

learning.

Hyper-heuristics for classification are also discussed.

4

A. MALWARE DETECTION TECHNIQUES

Ye et al. [53], in their recent study, divided the

various approaches of detecting malware into three

categories: those that rely on signatures, those that

rely on patterns, and those that rely on the cloud. The

majority of current malware detection approaches

rely on signature matching [21], [22].

[22] A signature is a unique short string of bytes de

need for each known piece of malicious software that

may be used to identify new, previously unknown

malware. Signature-based detection approaches may

identify malicious software, but they need regular

updates to incorporate the signature of newly

discovered malware in the signature database. In

addition, malware makers may quickly circumvent

them via the use of encryption, polymorphism, or

obfuscation [53]. In addition, creating a signature

database is often a manual process performed by

subject experts, which is a difficult and time-

consuming effort [16]. If a piece of malware software

is known to possess a certain set of patterns, then the

detection technique may identify it as malicious. To

differentiate malicious software, domain specialists

extract the patterns. In this case, software and

harmful _les [2, 10, and 35] are the offenders.

Malware software analysis and pattern extraction by

domain specialists, however, is mistake prone and

time intensive [19]. Because malware software

evolves so rapidly, it has become apparent that

manual analysis and extraction are substantial

obstacles to the development of pattern-based

detection approaches [53]. Using a server to store

detection software, cloud-based detection approaches

enable malware detection to be performed in client-

server architecture [41, [53], and [54].

However, the number of accessible cluster nodes and

the operating duration of the detection algorithms

have a significant impact on cloud-based detection

[29]. Because of this, multifunctional malicious

software may evade detection for longer than

intended.

B. META-LEARNING APPROACHES

For optimal performance, the parameters of a classic

SVM—which may be tweaked in several ways—

must be optimized [9]. The use of meta-learning

strategies to _end the optimal parameters and settings

for support vector machines. Meta-learning is a

strategy for figuring out the features of a problem and

the optimal solution algorithm [52]. In specifically, it

seeks to understand which aspects of a problem affect

an algorithm's performance so that the best possible

solution may be suggested.

To _end the parameter values of Gaussian kernel for

SVM to tackle regression issues, Soars et al. [43]

developed a meta-learning technique. In order to

determine what the optimal value of the kernel width

parameter should be, the authors used K-NN as a

ranking approach. In order to come up with viable

seed solutions for the genetic algorithm, Reef et al.

[36] combined meta-learning with case-based

reasoning. In order to address a specific instance of a

problem, the suggested evolutionary algorithm is

utilized to _end optimal parameter values for a

certain classifier. When deciding on a kernel

technique for SVM, Ali and Smith-Miles [3] used a

meta-learning strategy that combines data from

classical, distance, and distribution statistics. Using a

combination of meta-learning and search algorithms,

Gomes et al. [24] suggested a hybrid approach to

choosing SVM parameters. Additionally, references

like as [30] [32] and [37] demonstrate the application

of metal earning strategies in the context of SVM

tuning.

Although meta-learning strategies have proven useful

for tuning SVMs' parameters, they still struggle with

over- thing. For this reason, the extracted only

instances that have been utilized for training are

captured by problem features. Most previous methods

were developed to fine-tune a single kernel technique

and were only ever used to small-scale examples. To

efficiently manage massive data issues, we present a

system that employs kernel approaches and

formulates the selection process as a bi-objective

optimization.

C. HYPER-HEURISTICS

The goal of the emergent search technique known as

hyper-heuristic is to mechanically assemble or

generate a powerful problem solution [11]. The

classic hyper-heuristic architecture uses a collection

of design alternatives as input to determine which

one should be chosen. Instead of producing a

solution, a hyper-heuristic framework generates a

problem solver [39]. For the one-dimensional been

packing issue, Sims et al. [42] suggested a hyper-

heuristic framework to construct a collection of

characteristics that characterize a particular instance.

This paper makes use of a hyper-heuristic framework

to determine which heuristic should be employed to

address the present situation. To address this issue,

Ortiz-Bayle’s et al. [34] suggested a hyper-heuristic

approach based on learning vector quantization

neural networks. In order to choose which heuristic to

use, the hyper heuristic framework was taught to

analyze the instance's characteristics.

For unsupervised matching of fragmentary data,

Greer [25] provided a stochastic hyper-heuristic

framework. To choose which subset of features to

use, the hyper heuristic framework was put into place

as a feature selection technique. In order to forecast

5

the time and effort required to develop software,

Basgalupp [7] presented a hyper-heuristic framework

to generate a decision tree.

Furthermore, [6], [8], and [51] all employ hyper-

heuristic frameworks to develop classyfiers.

III. PROBLEM DESCRIPTION

There are three subparts to this section. After

outlining the SVM procedure, we define the con

duration issue. In conclusion, we show the suggested

the SVM configuration issue is formulated in terms

of several objectives.

MACHINES THAT PRODUCE VECTOR

SUPPORT A.

Supervised learning models, of which SVMs are an

example [50], have seen extensive usage for both

classification and regression purposes.

TABLE 1. Kernel functions.

SVMs, which are grounded in statistical learning

theory, are superior to other classification algorithms

in their ability to circumvent local optima. Known as

a kernel-based learning method, a Support Vector

Machine (SVM) looking for the best hyper plane In

order to achieve linear separation, the kernel learning

process transforms the input patterns into a higher-

dimensional feature space. Let's pretend we have L

data sets (xi, yi) j (xi, yi) 2 Rave, yes 2 R, where xi is

a v-dimensional input vector and yes is a matching y-

dimensional output vector. In order to build the best

possible decision-making function in the feature

space, the SVM method maps the input vector xi onto

that space.

 Is the number of

support vectors, which is determined by the

insensitive loss coef client, “the margin parameter (or

penalty), and C, the weight vector. Two slack

variables, I and I are provided, both of which may be

non-negative numbers. By recasting Equation (1) as

the following dual issue, we can determine the best

course of action:

Lagrange coef clients I and _ I stand for the two slack

variables, b 2 R is the bias, and K(x, xi) is the

theorem.

The Kernel Function

The mapping function from the feature space is

denoted here by 8(.). The dot product of two points in

the high-dimensional sample space is calculated

using the kernel function. Table 1 provides a brief

overview of the most common kernel functions used

by SVMs [9]. The user is responsible for determining

the values and d in this table, which are all kernel

parameters.

The current kernel functions may be divided into two

categories: local and global [9]. Although local

kernel functions are adept at learning, they struggle

when it comes to generalization. Global kernel

functions, on the other hand, are excellent at

generalization but terrible at specifics. Some kernel

functions are known to be local, like the radial kernel

function, while others are known to be global, like

the polynomial kernel function. Determining which

kernel function is appropriate for a given issue

instance or decision point is the major difficulty. The

kernel selection procedure is very sensitive to the

input vector distribution and the nature of the link

between the input and output vectors (predicted

variables). In big data cyber security, in particular,

the feature space distribution is not known in advance

and may vary over the course of the solution process.

Therefore, kernel selection may have a significant

effect on SVM performance, since different kernel

functions may work well for certain instances or

phases of the solution process. We employ a

combination of kernel functions in our study to solve

this problem and overcome the limitations of utilizing

a single kernel function.

6

B. SVM CONFIGURATION FORMULATION

Commonly, C, the kernel type, and the kernel

parameters are set in a standard SVM con duration.

The goal is to find SVM configurations inside the

configuration space. A comprehensive set of

configurations that, when evaluated on fresh data,

provide the smallest potential error. This may be

written as a tulle of the type SVM, _, D, C, S >,

where [26] describes the issue as a black-box

optimization seeking an optimum cross-validation

error (I). The parameterized method is denoted as

SVM, the search space of all potential SVM con

durations (C, kernel type, and kernel parameters) by

_, the distribution of the data set by D, the cost

function by C, and the statistical data by S.

Multiple SVM configurations are shown here as sets

of 2. As shown by the cost function C, each iteration

of the SVM with applied to an individual issue

instance 2 D is equivalent to one run of the SVM.

When an SVM is put to the test over several

instances, some statistical information is gathered,

summarized, and presented as S (e.g., a mean value).

The suggested hyper-heuristic framework's primary

responsibility is to find a 2 where C (_) is maximized.

The C. MULTI-GOAL FORMULA

There are several objective functions in a multi-

objective optimization problem [17], each of which

must be optimized concurrently. The following is a

representation of a generic multi-objective

optimization problem of the minimization type:

where N is the total number of decision variables (x1,

x2,..., an), m is the total number of goals (if), c is the

total number of constraints ((X), and x is the decision

variable being optimized (L) The it decision variable

has a lower limit of I and an upper bound of x (U) I.

Dominance (_) is used to judge the relative merits of

two solutions to a multiobjective optimization

problem. If there are two solutions, a and b, and an is

better than b in all respects, then an is dominant over

b (a b) [17].

Solution that preempts all others the collection of all

such Pareto-optimal solutions is referred to as the

Pareto-optimal set (PS), and The Pareto front is an

image in the objective space (PF). Optimization

algorithms' primary focus is on finding the best PS

possible. There is a tradeoff between the complexity

(the NSVs) and the margin (C) that affects the

accuracy of a support vector machine (SVM) [46].

Over- thing may occur with a high number of support

vectors, whereas wrong sample classification can

occur with a big value of C intended to improve

generalization capacity. The choice of SVM con

duration allows one to adjust this trade-off (C, kernel

type and kernel parameters). Specifically, we see the

accuracy and complexity (number of support vectors

(NSV) obtained across the training examples) as

competing goals in this study [46]:

The accuracy was excellent. The precision indicates

how well a problem instance was classified. K-fold

cross-validation is a method that may be used to

determine this (CV), where the provided instance is

partitioned into K equal-sized disjoint sets D1, DK.

This SVM is trained K times, one for each

configuration (2). Each cycle consists of K iterations,

where K minus one sets are utilized for training and

the remaining set is used for testing. Over the course

of K training cycles, the error (err) is the typical

occurrence of incorrectly classified input.

Complexity. The complexity is the upper constraint

on the predicted number of mistakes or the number of

support vectors (NSV). The SVM configuration 2

contains the variables used for making the call (C,

kernel type and kernel parameters). Each decision

variable has a set of allowed values, or boundaries.

The optimization problem (m D 2) may be written as

[46]:

7

The procedure (shown in Figure 1) that will be used.

where err is the number of incorrectly classified data

sets and NSV is the total number of support vectors.

IV. METHODOLOGY

Figure 1 shows the _orchard for the suggested

approach (called HH-SVM hereafter). Both the SVM

and a hyper-heuristic framework make up this

methodological approach. The hyper-heuristic

framework's primary function is to provide con

duration (C, kernel type, and kernel parameters) for

the SVM to use. The cost function (average values of

err and NSV) is calculated by the SVM using the

resulting con duration, and then sent to the hyper

heuristic framework for further processing. There are

a predetermined number of times this procedure is

carried out. Subsequent sections elaborate on the

fundamental features of the proposed hyper-heuristic

framework.

HYPER-HEURISTIC FRAMEWORK: A

PROPOSAL

Using the hyper-heuristic architecture shown in

Figure 2, we can pick the best configurations to test.

It consists of a high-level strategy and a set of

heuristics at a lower level [11]. This high-level tactic

avoids the solution space in favors of the heuristic

space. Every time around, the high-level strategy

takes a gander at the available low-level heuristics,

picks one, applies it to the current solution to

generate a new solution, and then determines whether

or not to accept the new solution. The low-level

heuristics are a group of heuristics that work directly

on the problem's solution space [39].

FIGURE 2. Hyper-heuristic framework.

Representation of the Solution in Figure 3.

Strength in Convergence of the Dominant Method.

When applied to a set of solutions, the decomposition

method enables whereas the dominant method relies

on past research. Using the previous population, the

archive, or both, the hyper heuristic framework

creates a new population of solutions. Therefore, the

search is able to strike a healthy balance between

convergence and variety. It's important to remember

that if you want great variety, you want to spread the

solutions out as far as possible along PF, but if you

want strong convergence, you want to minimize the

distances between the solutions and PF.

In the parts that follow, we'll go through the

fundamentals of the hyper-heuristic framework we've

presented.

IMAGING THE SOLUTION

Each solution in our framework stands in for one

possible SVM configuration (2). Figure 3 depicts a

one-dimensional array. The margin parameter (or

penalty) is denoted by C in this figure; KF is the

index of the chosen kernel function; and k1, K2, kef

are its parameters.

INITIALIZATION OF THE POPULATION

The PS is seeded with a random set of solutions. To

generate a random number for each choice variable in

a given solution (x), we use the following equation:

8

where (I)I is the index of the decision variable (d)d is

the total number of decision variables (p)p is the

index of the solution (josh) and (josh)j is the

population size Randi For the it decision variable, I

(0; 1) yields a random value in the range [0,1], lp I is

the lower limit on that value, and upi is the upper

bound.

DETERMINING FITNESS, PART D

According to the formula, each solution in the

population is given a score that reflects how well it

performs in comparison to the other solutions in the

population. In this study, the MOEA/D methodology

is used to the SVM con duration selection issue to

optimize for multiple objectives simultaneously.

First, a given multi-objective optimization issue is

deconstructed into a set of single-objective sub

problems, and then, these sub problems are solved

jointly [57]. Following the steps outlined in [57],

MOEA/D applies a secularization function to an issue

in order to break it down into a set of salaried single-

objective sub-problems.

HIGH-LEVEL STRATEGY

The primary function of a high-level strategy is to

mechanize the heuristic selection process [39]. Our

recommended strategic the following actions

constitute a strategy.

(1) PICK

Step one, "selection," entails making a choice from

among the available heuristics. For our purposes, we

use Multi-Armed Bandit (MAB) [39] as a heuristic

online-selection method. All heuristic results are

recorded and analyzed in MAB to choose which one

to utilize. An empirical reward quid and a confidence

level in are linked to each heuristic. When using this

heuristic throughout a search, you may expect to get,

on average, a reward equal to quid. It is preferable to

have a larger empirical reward. The number of times

the it heuristic has been used in the past is the

confidence level in. Using these two inputs, MAB

determines the confidence interval for each heuristic

and then choose the greatest value using the

following formula (Equation (11)):

For our framework, we use the notation fly 1;::: ;

LLH ng, where n is the total number of heuristics.

Time increments are denoted by the index t, which

also serves as the current repeating the search

process. The confidence interval will not be too

influenced by either the empirical reward or the confi

dence level, and c is a scaling factor that regulates the

balance between these two factors. For instance, a

heuristic with a high payoff but little use should be

favoured less than one with a slightly lower reward

but higher usage rate.

How to compute the empirical reward qi(t):

From the beginning of the search up to the current

iteration t, the RI (t) component represents the entire

improvement brought by heuristic I.

2) APPLY

In the application phase, two activities take place:

Determine the best course of action. Using this

process, we may choose which potential partners to

include in the breeding pool. Our proposed method

for solution selection draws from the best features of

both the decomposition and Pareto (dominance)

techniques. Each of the currently available solutions

in MOEA/D stands for a different sub-problem.

Combining decomposition and dominance allows us

to optimize each sub-problem using data either from

just its neighboring sub-problems with probability pn,

from its neighboring sub-problems plus the archive

with probability pan, or from the archive alone with

probability pa. The Euclidean distances between any

two solutions based on their weight vectors are used

to establish an axed set of neighboring solutions for

each sub-problem.

It makes use of heuristics. In this step, a mating pool

is generated and the chosen heuristic is applied to it

to develop an improved set of solutions.

Three, Take the Answer the validity of the newly

developed solutions is evaluated in the acceptance

phase. We begin by drawing parallels between

solution x and the related sub problems Hence, if the

9

secularization function get(x; _) > get(y; _), then x

will be used instead of y. Following this, we include

no dominated approaches into the repository for

future reference.

#4) ENDS In this way, the search procedure is

completed. If the maximum number of iterations has

been reached, this step stops the search and delivers

the set of no dominated solutions. In every other case,

it begins a new cycle.

LOW-LEVEL HEURISTICS

The low-level heuristics (LLHs) are a group of rules

that may be applied directly to a solution and are

tailored to a particular situation. One or more

solutions are fed into each LLH, and they are

subsequently altered in order to provide a novel

answer to the problem. Within the provided

framework, we use many heuristics sets in our study.

It has been shown that these heuristics work well for

many issues and even for various phases of the same

problem. The goal in selecting these heuristics is to

broaden the search's scope and make use of a variety

of search techniques.

Here is a list of the heuristics [20]:

Where x1, x2, x3, x4, and x5 represent distinct

solutions chosen from the mating pool using the

procedure outlined in IV-E.2. F is a value of the

scaling factor, which are _axed to 0.9 for the purpose

of this research.

V. EXPERIMENTAL SETUP

This section provides a brief overview of the

benchmark examples that were used to evaluate the

proposed framework and its parameters.

BENCHMARK INSTANCES A.

To evaluate our methodology, we applied it to two

cyber security situations of varying sizes and shapes.

CLASSIFICATION OF LARGE AMOUNTS OF

DATA FROM MICROSOFT MALWARE

The Microsoft Malware Big Data Classification

Problem, created for BIG 2015 on Kaggle, is used for

the first time in an experimental assessment. 1

Microsoft supplied 500 GB of data of known

malware _les representing a combination of 9

families (classes) for use in training and testing.

TABLE 2: The default values for our framework's

parameters; the training set contains a total of

10868 malwares.

The test collection contains 10783 different types of

malware. The. Bytes files are the samples, while

treble files in assembly language are the

disassembled versions. (The filename) ends in '.as,'

which indicates that it is an assembly language file.

The end aim is to reduce the log loss function below

by training the classification algorithm using the

training data to properly classify each of the testing

samples into one of the 9 categories (malware

families).

10

Where N stands for the total number of training

samples, M for the total number of classes, log for

the natural logarithm, and yij for a true label with a

value of 1 if I is in class j and a value of 0 otherwise.

The chance that item I is in set j is denoted by the

estimate pij. Visit Kaggle for more information.

INTRUSION DETECTION FOR ANOMALY

The NSL-KDD2 anomalous intrusion detection

instances were employed in the second experimental

assessment. The KDDCUP99 dataset was compiled

by analyzing incoming network tram c, and some of

those records are included in NSL-KDD as well.

Numerous academics have used NSL-KDD to create

innovative IDSs for networks (NIDs). Classified as

normal or anomalous, the NSL-KDD issue instance

has a total of 125,973 training samples and 22,544

testing samples (i.e., a network attack).

ADJUSTING THE PARAMETERS

There are several parameters of the suggested

framework that must be established in advance. We

did some preliminary research to determine

appropriate settings for these knobs.

We tried several settings while leaving all other

variables at their default levels. In Table 2, we detail

the many parameter settings we considered and the

values we ultimately settled on.

VI. RESULTS AND COMPARISONS

Here, we report on the experiments we ran to test the

efficacy of the paper's suggested HH-SVM system.

We tested two different experiments. The _rest

evaluation compared HH-SVM to each distinct low-

level heuristic. The second experiment compared

HH-performance SVM's to that of competing

algorithms from the literature.

Results from the six low-level heuristics (LLH1 to

LLH6) are compared with those from HH-SVM in

Table 3.

TABLE 4. The NSV values obtained by HH-SVM

and the individual low-level heuristics (LLH1 to

LLH6).

A. HH-SVM COMPARED WITH INDIVIDUAL

LOW-LEVEL HEURISTICS

Here, we evaluate the proposed HH-SVM vs. other

baseline methods (LLH). We want to analyze the

outcomes of the suggested hyper-heuristic framework

and its benefits. Search efficiency while using a

number of LLHs. Each LLH was put through its own

battery of tests to this purpose. Seven distinct

algorithms—HH-SVM, LLH1, LLH2, LLH3, LLH4,

LLH5, and LLH6—produced the findings. All

algorithms were run in the same environment, and the

same foundational elements were applied to both

problems (BIG 2015 and NSL-KDD). Table 3

compares the average outcomes from 31 separate

simulations. Comparing BIG 2015 findings using log

loss, where lower numbers are better (20), and

comparing NSL-KDD results using accuracy, where

higher values are better, yields different conclusions.

When comparing the performance of different

algorithms, the table highlights the top performers in

bold. Results show that on both BIG 2015 and NSL-

KDD, HH-SVM performs better than the other

algorithms (LLH1, LLH2, LLH3, LLH4, LLH5, and

LLH6). Table 4 details the support vector (NSV)

counts for HH-SVM and the other methods examined

in both cases; smaller NSV counts are preferable.

This table shows that when compared to LLH1,

LLH2, LLH3, LLH4, LLH5, and LLH6, the NSV

values obtained by the proposed HH-SVM

architecture are lower for both BIG 2015 and NSL-

KDD. These successes verify the need for the

suggested hyper-heuristic architecture and the

heuristics pool (LLHs).

We also ran statistical analyses using the Wilcox on

test at the 0.05 significance level to double-check

these findings.

Comparison of p-values between HH-SVM and

LLH1 Table 5 details the results for LLH2, LLH3,

LLH4, LLH5, and LLH6. When compared to the

other algorithms, HH-SVM has a lower p-value in

TABLE 5; hence it is clearly the better choice. When

11

compared to the separate low-level heuristics, HH-

SVM has lower p-values.

TABLE 6. Comparison of the log loss results of HH-

SVM and other algorithms.

Relative to. If the p-value is more than 0.05, it means

that the HH-SVM framework we propose does not

significantly outperform existing methods. The table

makes it easy to observe that all p-values are less

than 0.05; hence HH-SVM is clearly the winner of

BIG 2015 and NSL-KDD when compared to LLH1,

LLH2, LLH3, LLH4, LLH5, and LLH6.

B. An Evaluation of HH-SVM and Competing

Algorithms

Here we compare HH-findings SVM's to those found

in the published literature. We compare the following

algorithms for BIG 2015:

 XGBoost (AE)

 [RF] Random Forest

 XGBoost with Optimization (OXB) [1]

The accuracy results produced by HH-SVM are

compared to those obtained by the following

algorithms when applied to the NSL-KDD instance: a

naive Bays tree with a Gaussian distribution [48] [27]

Fuzzy Classifier (FC) The _Decision Tree (DT) [33]

Table 6 and Table 7 summarizes the outcomes of

HH-SVM and the other methods for the BIG 2015

and NSL-KDD issue situations, respectively. Results

for BIG 2015 are shown in Table 6 as log loss values,

as is customary in the literature; in Table 7, however,

the methods are compared using the accuracy metric.

A lower number suggests greater performance in log

loss comparisons, whereas a larger value indicates

better performance in accuracy comparisons. In both

tables, the top-performing algorithm was highlighted

in bold. TABLE 7 shows that compared to AE and

RF, HH-SVM has the lowest log loss value (TABLE

6). Accuracy studies comparing HH-SVM with other

popular methods.

VII. CONCLUSION

As part of this effort, we put forward a hyper-

heuristic SVM optimization framework for tackling

the challenges of cyber security in the age of big data.

Specifically, we formalized the SVM con duration

procedure as a dual-objective optimization issue

whereby precision and model complexity is seen as

antagonistic goals. The suggested hyper-heuristic

framework is effective in resolving this issue of bi-

objective optimization. The Pareto set of optimal

configurations is approximated by combining the

benefits of decomposition- and Pareto-based

techniques, both of which are included into the

framework. Both Microsoft's malware big data

classification and anomalous intrusion detection

serve as benchmarks for testing our methodology.

Experimental findings show that the suggested

framework may achieve comparable or even better

outcomes compared to previous algorithms, proving

its efficacy and potential.

REFERENCES

[1] M. Hamada, D. Ulyanovsk, S. Semenov, M.

Tro_mov, and G. Jacinto, ``Novel feature extraction,

selection and fusion for effective malware family

classi_cation,'' in Proc. 6th ACM Conf. Data Appl.

Secure. Privacy, 2016, pp. 183_194.

[2] A. V. Aho and M. J. Cora sick, ``Efficient string

matching: An aid to bibliographic search,'' Common.

ACM, vol. 18, no. 6, pp. 333_340, Jun. 1975.

[3] S. Ali and K. A. Smith-Miles, ``A meta-learning

approach to automatic kernel selection for support

12

vector machines,'' Neurocomputing, vol. 70, nos. 1_3,

pp. 173_186, 2006.

[4] N.-E. Ayah, M. Cherie, and C. Y. Seen,

``Automatic model selection for the optimization of

SVM kernels,'' Pattern Recognition. vol. 38, no. 10,

pp. 1733_1745, 2005.

[5] Y. Bao, Z. Hub, and T. Xing, ``A PSO and pattern

search based mimetic algorithm for SVMs

parameters optimization,'' Neurocomputing, vol. 117,

pp. 98_106, Oct. 2013.

[6] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de

Carvalho, and A. A. Ferias, ``A hyper-heuristic

evolutionary algorithm for automatically designing

decision-tree algorithms,'' in Proc. 14th Annul. Conf.

Genet. Evil. Compute.,

2012, pp. 1237_1244.

[7] M. P. Basgalupp, R. C. Barros, T. S. da Silva,

and A. C. P. L. F. de Carvalho, ``Software effort

prediction: A hyper-heuristic decision-tree based

approach,'' in Proc. 28th Annul. ACM Sump. Appl.

Comput., 2013, pp. 1109_1116.

[8] M. P. Basgalupp, R. C. Barros, and V.

Podgorelec, ``Evolving decision-tree induction

algorithms with a multi-objective hyper-heuristic,'' in

Proc. 30
th

 Annu. ACM Symp. Appl. Comput., 2015,

pp. 110_117.

[9] A. Ben-Hur and J. Weston, ``A user's guide to

support vector machines,'' in Data Mining

Techniques for the Life Sciences. Methods in

Molecular Biology (Methods and Protocols), O.

Cargo and F. Eisenhower, Eds. Vole 609. New York,

NY, USA: Humana Press, 2010, pp. 223_239.

[10] D. Brimley, C. Hart wig, Z. Liang, J. Newsome,

D. Song, and H. Yin, ``Automatically identifying

trigger-based behavior in malware,'' in Boot- net

Detection (Advances in Information Security, W. Lee,

C. Wang, and D. Dagon, Eds. Boston, MA, USA:

Springer, 2008.

[11] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E.

Oscan, and J. R. Woodward, ``A classi_cation of

hyper-heuristic approaches,'' in Handbook of Met

heuristics (International Series in Operations

Research & Management Science), vol. 146, M.

Gendered and J. Y. Putin, Eds. Boston, MA, USA:

Springer, 2010.

[12] A. Chalimourda, B. Schölkopf, and A. J. Smola,

``experimentally optimal _ in support vector

regression for different noise models and parameter

settings,'' Neural Newt. vol. 17, no. 1, pp. 127_141,

2004.

[13] C.-C. Chang and C.-J. Lin, ``LIBSVM: A library

for support vector machines,'' ACM Trans. Intel. Syst.

Technol., vol. 2, no. 3, pp. 27:1_27:27, 2011.

[14] M. Chen, S. Mao, and Y. Liu, ``Big data: A

survey,'' Mobile Newt. Appl., vol. 19, no. 2, pp.

171_209, Apr. 2014.

[15] N. Cristianini and J. Shaw-Taylor, an

Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge, U.K.:

Cambridge Univ. Press, 2000.

Author details:

MARGANI PRIYANKA

19RG1A0534

Department of Computer Science and Engineering,

Malla Reddy College of Engineering For Women,

Maisammaguda, Hyderabad, Telangana

KALUGATLA UDAYAKEERTHI

19RG1A0525

Department of Computer Science and Engineering,

Malla Reddy College of Engineering For Women,

Maisammaguda, Hyderabad, Telangana

KONDA AMULYA

19RG1A0528

Department of Computer Science and Engineering,

Malla Reddy College of Engineering For Women,

Maisammaguda, Hyderabad, Telangana

GADWALA SWETHA

19RG1A0517

Department of Computer Science and Engineering,

Malla Reddy College of Engineering For Women,

Maisammaguda, Hyderabad, Telangana

Dr VAKA MURALI MOHAN

Guide

Principal & Professor, Department of Computer

Science and Engineering, Malla Reddy College of

Engineering For Women, Maisammaguda,

Hyderabad, Telangana

