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ABSTRACT 
 

Is a major issue, and that this fact poses a significant challenge to the academic community. In order to deal with the security issues that 

come with large data, machine learning techniques have been proposed as a possible solution. Support vector machines (SVMs) have been 

one of the most popular of these methods. Obtained impressive results on a wide range of classification tasks. However, in order to set up an 

efficient SVM, the user must first de ne the appropriate SVM con gyration in advance—a difficult operation that calls for specialized 

expertise and a great deal of trial and error. Here, we provide a formalization of the SVM configuration procedure as a bi-objective 

optimization problem, with accuracy and model complexity as two competing goals. New problem-domain-agnostic hyper-heuristic framework 

for bi-objective optimization is proposed. The first ever hyper-heuristic for this issue has been created just now. To solve this problem, the 

authors suggest a hyper-heuristic framework that combines both high-level strategy and heuristics. The search performance is utilized by the 

high-level approach to determine which of many possible low-level heuristics should be used to produce a new SVM con gyration. Each of the 

low-level algorithms takes a unique approach to successfully searching the space of possible SVM configurations. The proposed framework 

adaptively combines the benefits of decomposition- and Pareto-based techniques to approximate the Pareto set of SVM con gyrations, 

allowing it to tackle the problem of bi-objective optimization. Two cyber security challenges, Microsoft malware big data classfication and 

anomalous intrusion detection, were used to assess the performance of the suggested system. In comparison to its contemporaries and other 

algorithms, the acquired results show that the suggested framework is very successful. 

 

I. INTRODUCTION 
 

Rapid progress in areas like mobile, social and the 

Internet of Things results in an explosion of data in 

digital form. Big has special meaning in this setting. 

Data has arisen to characterize these enormous stores  

Of digital information. Big data is defined as "very 

big and complicated datasets with both structured and  

Unstructured data that are created on a regular basis 

and need analysis in a very short period of time" [49]. 

Huge data, as contrast to the big database, refers to 

data sets that are either too large, change too rapidly, 

or are too complex to be processed by conventional 

methods. Three criteria often used to define big data 

are scale, diversity, and speed (aka 3Vs). The 3Vs are 

the attributes or dimensions of data, with volume 

referring to the sheer bulk of the data, variety 

indicating that the data came from a wide range of 

sources, and velocity referring to the swiftness with 

which new data may be created, streamed, and 

aggregated [49]. The growth of all three features 

(3Vs), not simply the volume alone, is primarily  

Responsible for the complexity and difficulty posed 

by big data [14]. Researchers, analysts, and business 

users may all benefit from the speedier, more 

informed judgments made possible by big data [38]. 

Researchers and practitioners from a wide range of 

groups, including academia, business, and 

government organizations, have focused on this _led 

because of its practical applications and problems 

[14].  
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The 3Vs and data security were already problems, but 

big data introduced a new one. Evidence suggests 

that big data may do more than just enhance the 

scope of not only exacerbate existing security issues, 

but also provide new cyber-security dangers that 

must be dealt with in novel and resourceful ways. 

When it comes to gaining insights from big data, 

security is universally recognized as the top priority 

[47]. Threat detection, authentication, and 

steganography are all examples of problems in cyber 

security that arise with large amounts of data [45]. 

The biggest problem with large data security is 

finding malware. 

Malware, an abbreviation for "harmful software," is a 

broad category of malicious programmers that may 

infect systems and leak sensitive data over networks, 

email, or websites [53]. Researchers and 

organizations have recognized the problems that may 

be created by this malicious software, and therefore 

have recognized the need to develop new strategies to 

avoid them. Malware is a major concern in big data, 

yet surprisingly little study has been conducted in this 

field [47]. Methods for detecting malware range from 

those based on signatures [22], to those that track 

user activity [54], and still others that use patterns 

[19], [53]. Existing malware detection approaches, 

however, are primarily suggested to deal with small-

scale datasets and are unable to handle enormous data 

within a decent length of time. These approaches are 

also prohibitively expensive to implement and 

maintain and have low success rates [53]. Attackers 

may readily circumvent them. Machine learning 

(ML) techniques for categorizing unknown patterns 

and malicious software have been offered as a 

solution to the aforementioned problems [45], [53]. 

Preliminary results from ML seem good. Outcomes 

for categorizing and identifying previously 

discovered malicious software. 

SVMs, or support vector machines, are a common 

ML approach because to their impressive 

performance in a wide range of practical settings 

[15]. SVMs' high level of performance and scalability 

[40] are major factors in their widespread use. 

Despite these benefits, an SVM's performance is very 

sensitive to its con gyration [9]. 

The soft margin parameter (or penalty) and the kernel 

type and its parameters are often chosen during an 

SVM con gyration. There are a number of different 

approaches to choosing SVM con gyrations that have 

been discussed in the academic literature. The 

phrasing of the SVM configuration issue and the 

optimization technique used allow for a 

categorization of these approaches [9], [12]. The 

performance of a created SVM configuration may be 

evaluated using k-fold cross-validation if just a single 

criterion is utilized, or using many criteria, such as 

model correctness and model complexity, in order to 

make an informed decision [46]. Grid search 

techniques, gradient-based approaches, and meta-

heuristic methods are some of the optimization 

strategies that may be used. It's simple to construct 

grid search algorithms, and they've proven effective 

[13]. However, they come with a high computational 

cost, reducing their usefulness for large data issues. 

The primary drawbacks of gradient-based approaches 

are that they are very dependent on the beginning 

point and that the objective function must be 

differentiable [4]. To get beyond the limitations of 

grid search and gradient-based approaches, meta-

heuristic approaches have been proposed [5, 28, and 

56]. 

It is true that a meta-heuristic method's performance 

is very sensitive to the parameters and operators that 

are chosen, but this is because these choices are 

based on a number of factors. Established as a 

difficult and lengthy task. 

Furthermore, in most research, a single kernel is 

used, and its parameter space is searched. In this 

paper, we provide a new bi-objective hyper-heuristic 

framework for SVM configuration optimization. Due 

to its flexibility and ability to produce highly 

competitive con gyrations, hyper heuristics are 

superior to other approaches. To _end a powerful 

SVM con gyration for big data cyber security, our 

proposed hyper-heuristic framework includes a 

number of critical components that set it apart from 

prior research. As a first step, the framework takes 

into account a bi-objective formulation of the SVM 

con gyration issue, where accuracy and model 

complexity are seen as competing goals. Second, the 

framework determines the kernel type, kernel 

settings, and soft margin parameter to use. Third, to 

_end an approximate Pareto set of SVM con 

durations, the hyper-heuristic framework combines 

the benefits of decomposition- and Pareto-based 

techniques in an adaptable fashion. 

 

II. RELATED WORK 
Here, we briefly review other studies that touch on 

the same topics of malware detection and meta-

learning. 

Hyper-heuristics for classification are also discussed. 
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A. MALWARE DETECTION TECHNIQUES 

 

Ye et al. [53], in their recent study, divided the 

various approaches of detecting malware into three 

categories: those that rely on signatures, those that 

rely on patterns, and those that rely on the cloud. The 

majority of current malware detection approaches 

rely on signature matching [21], [22]. 

[22] A signature is a unique short string of bytes de 

need for each known piece of malicious software that 

may be used to identify new, previously unknown 

malware. Signature-based detection approaches may 

identify malicious software, but they need regular 

updates to incorporate the signature of newly 

discovered malware in the signature database. In 

addition, malware makers may quickly circumvent 

them via the use of encryption, polymorphism, or 

obfuscation [53]. In addition, creating a signature 

database is often a manual process performed by 

subject experts, which is a difficult and time-

consuming effort [16]. If a piece of malware software 

is known to possess a certain set of patterns, then the 

detection technique may identify it as malicious. To 

differentiate malicious software, domain specialists 

extract the patterns. In this case, software and 

harmful _les [2, 10, and 35] are the offenders. 

Malware software analysis and pattern extraction by 

domain specialists, however, is mistake prone and 

time intensive [19]. Because malware software 

evolves so rapidly, it has become apparent that 

manual analysis and extraction are substantial 

obstacles to the development of pattern-based 

detection approaches [53]. Using a server to store 

detection software, cloud-based detection approaches 

enable malware detection to be performed in client-

server architecture [41, [53], and [54]. 

However, the number of accessible cluster nodes and 

the operating duration of the detection algorithms 

have a significant impact on cloud-based detection 

[29]. Because of this, multifunctional malicious 

software may evade detection for longer than 

intended. 

B. META-LEARNING APPROACHES 

For optimal performance, the parameters of a classic 

SVM—which may be tweaked in several ways—

must be optimized [9]. The use of meta-learning 

strategies to _end the optimal parameters and settings 

for support vector machines. Meta-learning is a 

strategy for figuring out the features of a problem and 

the optimal solution algorithm [52]. In specifically, it 

seeks to understand which aspects of a problem affect 

an algorithm's performance so that the best possible 

solution may be suggested. 

To _end the parameter values of Gaussian kernel for 

SVM to tackle regression issues, Soars et al. [43] 

developed a meta-learning technique. In order to 

determine what the optimal value of the kernel width 

parameter should be, the authors used K-NN as a 

ranking approach. In order to come up with viable 

seed solutions for the genetic algorithm, Reef et al. 

[36] combined meta-learning with case-based 

reasoning. In order to address a specific instance of a 

problem, the suggested evolutionary algorithm is 

utilized to _end optimal parameter values for a 

certain classifier. When deciding on a kernel 

technique for SVM, Ali and Smith-Miles [3] used a 

meta-learning strategy that combines data from 

classical, distance, and distribution statistics. Using a 

combination of meta-learning and search algorithms, 

Gomes et al. [24] suggested a hybrid approach to 

choosing SVM parameters. Additionally, references 

like as [30]  [32] and [37] demonstrate the application 

of metal earning strategies in the context of SVM 

tuning. 

Although meta-learning strategies have proven useful 

for tuning SVMs' parameters, they still struggle with 

over- thing. For this reason, the extracted only 

instances that have been utilized for training are 

captured by problem features. Most previous methods 

were developed to fine-tune a single kernel technique 

and were only ever used to small-scale examples. To 

efficiently manage massive data issues, we present a 

system that employs kernel approaches and 

formulates the selection process as a bi-objective 

optimization. 

 

C. HYPER-HEURISTICS 

 

The goal of the emergent search technique known as 

hyper-heuristic is to mechanically assemble or 

generate a powerful problem solution [11]. The 

classic hyper-heuristic architecture uses a collection 

of design alternatives as input to determine which 

one should be chosen. Instead of producing a 

solution, a hyper-heuristic framework generates a 

problem solver [39]. For the one-dimensional been 

packing issue, Sims et al. [42] suggested a hyper-

heuristic framework to construct a collection of 

characteristics that characterize a particular instance. 

This paper makes use of a hyper-heuristic framework 

to determine which heuristic should be employed to 

address the present situation. To address this issue, 

Ortiz-Bayle’s et al. [34] suggested a hyper-heuristic 

approach based on learning vector quantization 

neural networks. In order to choose which heuristic to 

use, the hyper heuristic framework was taught to 

analyze the instance's characteristics. 

For unsupervised matching of fragmentary data, 

Greer [25] provided a stochastic hyper-heuristic 

framework. To choose which subset of features to 

use, the hyper heuristic framework was put into place 

as a feature selection technique. In order to forecast 
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the time and effort required to develop software, 

Basgalupp [7] presented a hyper-heuristic framework 

to generate a decision tree. 

Furthermore, [6], [8], and [51] all employ hyper-

heuristic frameworks to develop classyfiers. 

 

III. PROBLEM DESCRIPTION 
 

There are three subparts to this section. After 

outlining the SVM procedure, we define the con 

duration issue. In conclusion, we show the suggested 

the SVM configuration issue is formulated in terms 

of several objectives. 

MACHINES THAT PRODUCE VECTOR 

SUPPORT A. 

Supervised learning models, of which SVMs are an 

example [50], have seen extensive usage for both 

classification and regression purposes. 

TABLE 1. Kernel functions. 

 

SVMs, which are grounded in statistical learning 

theory, are superior to other classification algorithms 

in their ability to circumvent local optima. Known as 

a kernel-based learning method, a Support Vector 

Machine (SVM) looking for the best hyper plane In 

order to achieve linear separation, the kernel learning 

process transforms the input patterns into a higher-

dimensional feature space. Let's pretend we have L 

data sets (xi, yi) j (xi, yi) 2 Rave, yes 2 R, where xi is 

a v-dimensional input vector and yes is a matching y-

dimensional output vector. In order to build the best 

possible decision-making function in the feature 

space, the SVM method maps the input vector xi onto 

that space. 

 

 Is the number of 

support vectors, which is determined by the 

insensitive loss coef client, “the margin parameter (or 

penalty), and C, the weight vector. Two slack 

variables, I and I are provided, both of which may be 

non-negative numbers. By recasting Equation (1) as 

the following dual issue, we can determine the best 

course of action: 

 
 

Lagrange coef clients I and _ I stand for the two slack 

variables, b 2 R is the bias, and K(x, xi) is the 

theorem. 

The Kernel Function 

 

The mapping function from the feature space is 

denoted here by 8(.). The dot product of two points in 

the high-dimensional sample space is calculated 

using the kernel function. Table 1 provides a brief 

overview of the most common kernel functions used 

by SVMs [9]. The user is responsible for determining 

the values and d in this table, which are all kernel 

parameters. 

The current kernel functions may be divided into two 

categories: local and global [9]. Although local 

kernel functions are adept at learning, they struggle 

when it comes to generalization. Global kernel 

functions, on the other hand, are excellent at 

generalization but terrible at specifics. Some kernel 

functions are known to be local, like the radial kernel 

function, while others are known to be global, like 

the polynomial kernel function. Determining which 

kernel function is appropriate for a given issue 

instance or decision point is the major difficulty. The 

kernel selection procedure is very sensitive to the 

input vector distribution and the nature of the link 

between the input and output vectors (predicted 

variables). In big data cyber security, in particular, 

the feature space distribution is not known in advance 

and may vary over the course of the solution process. 

Therefore, kernel selection may have a significant 

effect on SVM performance, since different kernel 

functions may work well for certain instances or 

phases of the solution process. We employ a 

combination of kernel functions in our study to solve 

this problem and overcome the limitations of utilizing 

a single kernel function. 
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B. SVM CONFIGURATION FORMULATION 

 

Commonly, C, the kernel type, and the kernel 

parameters are set in a standard SVM con duration. 

The goal is to find SVM configurations inside the 

configuration space. A comprehensive set of 

configurations that, when evaluated on fresh data, 

provide the smallest potential error. This may be 

written as a tulle of the type SVM, _, D, C, S >, 

where [26] describes the issue as a black-box 

optimization seeking an optimum cross-validation 

error (I). The parameterized method is denoted as 

SVM, the search space of all potential SVM con 

durations (C, kernel type, and kernel parameters) by 

_, the distribution of the data set by D, the cost 

function by C, and the statistical data by S. 

 

 

Multiple SVM configurations are shown here as sets 

of 2. As shown by the cost function C, each iteration 

of the SVM with applied to an individual issue 

instance 2 D is equivalent to one run of the SVM. 

When an SVM is put to the test over several 

instances, some statistical information is gathered, 

summarized, and presented as S (e.g., a mean value). 

The suggested hyper-heuristic framework's primary 

responsibility is to find a 2 where C (_) is maximized. 

 

The C. MULTI-GOAL FORMULA 

There are several objective functions in a multi-

objective optimization problem [17], each of which 

must be optimized concurrently. The following is a 

representation of a generic multi-objective 

optimization problem of the minimization type: 

 

where N is the total number of decision variables (x1, 

x2,..., an), m is the total number of goals (if), c is the 

total number of constraints ((X), and x is the decision 

variable being optimized (L) The it decision variable 

has a lower limit of I and an upper bound of x (U) I. 

Dominance (_) is used to judge the relative merits of 

two solutions to a multiobjective optimization 

problem. If there are two solutions, a and b, and an is 

better than b in all respects, then an is dominant over 

b (a b) [17]. 

 

Solution that preempts all others the collection of all 

such Pareto-optimal solutions is referred to as the 

Pareto-optimal set (PS), and The Pareto front is an 

image in the objective space (PF). Optimization 

algorithms' primary focus is on finding the best PS 

possible. There is a tradeoff between the complexity 

(the NSVs) and the margin (C) that affects the 

accuracy of a support vector machine (SVM) [46]. 

Over- thing may occur with a high number of support 

vectors, whereas wrong sample classification can 

occur with a big value of C intended to improve 

generalization capacity. The choice of SVM con 

duration allows one to adjust this trade-off (C, kernel 

type and kernel parameters). Specifically, we see the 

accuracy and complexity (number of support vectors 

(NSV) obtained across the training examples) as 

competing goals in this study [46]: 

The accuracy was excellent. The precision indicates 

how well a problem instance was classified. K-fold 

cross-validation is a method that may be used to 

determine this (CV), where the provided instance is 

partitioned into K equal-sized disjoint sets D1, DK. 

This SVM is trained K times, one for each 

configuration (2). Each cycle consists of K iterations, 

where K minus one sets are utilized for training and 

the remaining set is used for testing. Over the course 

of K training cycles, the error (err) is the typical 

occurrence of incorrectly classified input. 

Complexity. The complexity is the upper constraint 

on the predicted number of mistakes or the number of 

support vectors (NSV). The SVM configuration 2 

contains the variables used for making the call (C, 

kernel type and kernel parameters). Each decision 

variable has a set of allowed values, or boundaries. 

The optimization problem (m D 2) may be written as 

[46]: 
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The procedure (shown in Figure 1) that will be used. 

where err is the number of incorrectly classified data 

sets and NSV is the total number of support vectors. 

 

IV. METHODOLOGY 
 

Figure 1 shows the _orchard for the suggested 

approach (called HH-SVM hereafter). Both the SVM 

and a hyper-heuristic framework make up this 

methodological approach. The hyper-heuristic 

framework's primary function is to provide con 

duration (C, kernel type, and kernel parameters) for 

the SVM to use. The cost function (average values of 

err and NSV) is calculated by the SVM using the 

resulting con duration, and then sent to the hyper 

heuristic framework for further processing. There are 

a predetermined number of times this procedure is 

carried out. Subsequent sections elaborate on the 

fundamental features of the proposed hyper-heuristic 

framework. 

HYPER-HEURISTIC FRAMEWORK: A 

PROPOSAL 

Using the hyper-heuristic architecture shown in 

Figure 2, we can pick the best configurations to test. 

It consists of a high-level strategy and a set of 

heuristics at a lower level [11]. This high-level tactic 

avoids the solution space in favors of the heuristic 

space. Every time around, the high-level strategy 

takes a gander at the available low-level heuristics, 

picks one, applies it to the current solution to 

generate a new solution, and then determines whether 

or not to accept the new solution. The low-level 

heuristics are a group of heuristics that work directly 

on the problem's solution space [39]. 

 

FIGURE 2. Hyper-heuristic framework. 

 

Representation of the Solution in Figure 3. 

Strength in Convergence of the Dominant Method. 

When applied to a set of solutions, the decomposition 

method enables whereas the dominant method relies 

on past research. Using the previous population, the 

archive, or both, the hyper heuristic framework 

creates a new population of solutions. Therefore, the 

search is able to strike a healthy balance between 

convergence and variety. It's important to remember 

that if you want great variety, you want to spread the 

solutions out as far as possible along PF, but if you 

want strong convergence, you want to minimize the 

distances between the solutions and PF. 

In the parts that follow, we'll go through the 

fundamentals of the hyper-heuristic framework we've 

presented. 

 

IMAGING THE SOLUTION 

Each solution in our framework stands in for one 

possible SVM configuration (2). Figure 3 depicts a 

one-dimensional array. The margin parameter (or 

penalty) is denoted by C in this figure; KF is the 

index of the chosen kernel function; and k1, K2, kef 

are its parameters. 

INITIALIZATION OF THE POPULATION 

The PS is seeded with a random set of solutions. To 

generate a random number for each choice variable in 

a given solution (x), we use the following equation: 
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where (I)I is the index of the decision variable (d)d is 

the total number of decision variables (p)p is the 

index of the solution (josh) and (josh)j is the 

population size Randi For the it decision variable, I 

(0; 1) yields a random value in the range [0,1], lp I is 

the lower limit on that value, and upi is the upper 

bound. 

DETERMINING FITNESS, PART D 

According to the formula, each solution in the 

population is given a score that reflects how well it 

performs in comparison to the other solutions in the 

population. In this study, the MOEA/D methodology 

is used to the SVM con duration selection issue to 

optimize for multiple objectives simultaneously. 

First, a given multi-objective optimization issue is 

deconstructed into a set of single-objective sub 

problems, and then, these sub problems are solved 

jointly [57]. Following the steps outlined in [57], 

MOEA/D applies a secularization function to an issue 

in order to break it down into a set of salaried single-

objective sub-problems. 

 

HIGH-LEVEL STRATEGY 

The primary function of a high-level strategy is to 

mechanize the heuristic selection process [39]. Our 

recommended strategic the following actions 

constitute a strategy. 

(1) PICK 

Step one, "selection," entails making a choice from 

among the available heuristics. For our purposes, we 

use Multi-Armed Bandit (MAB) [39] as a heuristic 

online-selection method. All heuristic results are 

recorded and analyzed in MAB to choose which one 

to utilize. An empirical reward quid and a confidence 

level in are linked to each heuristic. When using this 

heuristic throughout a search, you may expect to get, 

on average, a reward equal to quid. It is preferable to 

have a larger empirical reward. The number of times 

the it heuristic has been used in the past is the 

confidence level in. Using these two inputs, MAB 

determines the confidence interval for each heuristic 

and then choose the greatest value using the 

following formula (Equation (11)): 

 

For our framework, we use the notation fly 1;::: ; 

LLH ng, where n is the total number of heuristics. 

Time increments are denoted by the index t, which 

also serves as the current repeating the search 

process. The confidence interval will not be too 

influenced by either the empirical reward or the confi 

dence level, and c is a scaling factor that regulates the 

balance between these two factors. For instance, a 

heuristic with a high payoff but little use should be 

favoured less than one with a slightly lower reward 

but higher usage rate. 

How to compute the empirical reward qi(t): 

 

 

From the beginning of the search up to the current 

iteration t, the RI (t) component represents the entire 

improvement brought by heuristic I. 

2) APPLY 

In the application phase, two activities take place: 

Determine the best course of action. Using this 

process, we may choose which potential partners to 

include in the breeding pool. Our proposed method 

for solution selection draws from the best features of 

both the decomposition and Pareto (dominance) 

techniques. Each of the currently available solutions 

in MOEA/D stands for a different sub-problem. 

Combining decomposition and dominance allows us 

to optimize each sub-problem using data either from 

just its neighboring sub-problems with probability pn, 

from its neighboring sub-problems plus the archive 

with probability pan, or from the archive alone with 

probability pa. The Euclidean distances between any 

two solutions based on their weight vectors are used 

to establish an axed set of neighboring solutions for 

each sub-problem. 

It makes use of heuristics. In this step, a mating pool 

is generated and the chosen heuristic is applied to it 

to develop an improved set of solutions. 

Three, Take the Answer the validity of the newly 

developed solutions is evaluated in the acceptance 

phase. We begin by drawing parallels between 

solution x and the related sub problems Hence, if the 
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secularization function get(x; _) > get(y; _), then x 

will be used instead of y. Following this, we include 

no dominated approaches into the repository for 

future reference. 

#4) ENDS In this way, the search procedure is 

completed. If the maximum number of iterations has 

been reached, this step stops the search and delivers 

the set of no dominated solutions. In every other case, 

it begins a new cycle. 
 

LOW-LEVEL HEURISTICS 

 

The low-level heuristics (LLHs) are a group of rules 

that may be applied directly to a solution and are 

tailored to a particular situation. One or more 

solutions are fed into each LLH, and they are 

subsequently altered in order to provide a novel 

answer to the problem. Within the provided 

framework, we use many heuristics sets in our study. 

It has been shown that these heuristics work well for 

many issues and even for various phases of the same 

problem. The goal in selecting these heuristics is to 

broaden the search's scope and make use of a variety 

of search techniques. 

Here is a list of the heuristics [20]: 

 
 

Where x1, x2, x3, x4, and x5 represent distinct 

solutions chosen from the mating pool using the 

procedure outlined in IV-E.2. F is a value of the 

scaling factor, which are _axed to 0.9 for the purpose 

of this research. 

 

 
 

V. EXPERIMENTAL SETUP 

 

This section provides a brief overview of the 

benchmark examples that were used to evaluate the 

proposed framework and its parameters. 

BENCHMARK INSTANCES A. 

To evaluate our methodology, we applied it to two 

cyber security situations of varying sizes and shapes. 

CLASSIFICATION OF LARGE AMOUNTS OF 

DATA FROM MICROSOFT MALWARE 

The Microsoft Malware Big Data Classification 

Problem, created for BIG 2015 on Kaggle, is used for 

the first time in an experimental assessment. 1 

Microsoft supplied 500 GB of data of known 

malware _les representing a combination of 9 

families (classes) for use in training and testing. 

TABLE 2: The default values for our framework's 

parameters; the training set contains a total of 

10868 malwares. 

 

The test collection contains 10783 different types of 

malware. The. Bytes files are the samples, while 

treble files in assembly language are the 

disassembled versions. (The filename) ends in '.as,' 

which indicates that it is an assembly language file. 

The end aim is to reduce the log loss function below 

by training the classification algorithm using the 

training data to properly classify each of the testing 

samples into one of the 9 categories (malware 

families). 
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Where N stands for the total number of training 

samples, M for the total number of classes, log for 

the natural logarithm, and yij for a true label with a 

value of 1 if I is in class j and a value of 0 otherwise. 

The chance that item I is in set j is denoted by the 

estimate pij. Visit Kaggle for more information. 

INTRUSION DETECTION FOR ANOMALY 

The NSL-KDD2 anomalous intrusion detection 

instances were employed in the second experimental 

assessment. The KDDCUP99 dataset was compiled 

by analyzing incoming network tram c, and some of 

those records are included in NSL-KDD as well. 

Numerous academics have used NSL-KDD to create 

innovative IDSs for networks (NIDs). Classified as 

normal or anomalous, the NSL-KDD issue instance 

has a total of 125,973 training samples and 22,544 

testing samples (i.e., a network attack). 

ADJUSTING THE PARAMETERS 

There are several parameters of the suggested 

framework that must be established in advance. We 

did some preliminary research to determine 

appropriate settings for these knobs. 

We tried several settings while leaving all other 

variables at their default levels. In Table 2, we detail 

the many parameter settings we considered and the 

values we ultimately settled on. 

 

VI. RESULTS AND COMPARISONS 
 

Here, we report on the experiments we ran to test the 

efficacy of the paper's suggested HH-SVM system. 

We tested two different experiments. The _rest 

evaluation compared HH-SVM to each distinct low-

level heuristic. The second experiment compared 

HH-performance SVM's to that of competing 

algorithms from the literature. 

Results from the six low-level heuristics (LLH1 to 

LLH6) are compared with those from HH-SVM in 

Table 3. 

 

 

TABLE 4. The NSV values obtained by HH-SVM 

and the individual low-level heuristics (LLH1 to 

LLH6). 

 

A. HH-SVM COMPARED WITH INDIVIDUAL 

LOW-LEVEL HEURISTICS 

 

Here, we evaluate the proposed HH-SVM vs. other 

baseline methods (LLH). We want to analyze the 

outcomes of the suggested hyper-heuristic framework 

and its benefits. Search efficiency while using a 

number of LLHs. Each LLH was put through its own 

battery of tests to this purpose. Seven distinct 

algorithms—HH-SVM, LLH1, LLH2, LLH3, LLH4, 

LLH5, and LLH6—produced the findings. All 

algorithms were run in the same environment, and the 

same foundational elements were applied to both 

problems (BIG 2015 and NSL-KDD). Table 3 

compares the average outcomes from 31 separate 

simulations. Comparing BIG 2015 findings using log 

loss, where lower numbers are better (20), and 

comparing NSL-KDD results using accuracy, where 

higher values are better, yields different conclusions. 

When comparing the performance of different 

algorithms, the table highlights the top performers in 

bold. Results show that on both BIG 2015 and NSL-

KDD, HH-SVM performs better than the other 

algorithms (LLH1, LLH2, LLH3, LLH4, LLH5, and 

LLH6). Table 4 details the support vector (NSV) 

counts for HH-SVM and the other methods examined 

in both cases; smaller NSV counts are preferable. 

This table shows that when compared to LLH1, 

LLH2, LLH3, LLH4, LLH5, and LLH6, the NSV 

values obtained by the proposed HH-SVM 

architecture are lower for both BIG 2015 and NSL-

KDD. These successes verify the need for the 

suggested hyper-heuristic architecture and the 

heuristics pool (LLHs). 

We also ran statistical analyses using the Wilcox on 

test at the 0.05 significance level to double-check 

these findings. 

Comparison of p-values between HH-SVM and 

LLH1 Table 5 details the results for LLH2, LLH3, 

LLH4, LLH5, and LLH6. When compared to the 

other algorithms, HH-SVM has a lower p-value in 

TABLE 5; hence it is clearly the better choice. When 
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compared to the separate low-level heuristics, HH-

SVM has lower p-values. 

 

 
 

TABLE 6. Comparison of the log loss results of HH-

SVM and other algorithms. 

 

 

 
Relative to. If the p-value is more than 0.05, it means 

that the HH-SVM framework we propose does not 

significantly outperform existing methods. The table 

makes it easy to observe that all p-values are less 

than 0.05; hence HH-SVM is clearly the winner of 

BIG 2015 and NSL-KDD when compared to LLH1, 

LLH2, LLH3, LLH4, LLH5, and LLH6. 

B. An Evaluation of HH-SVM and Competing 

Algorithms 

Here we compare HH-findings SVM's to those found 

in the published literature. We compare the following 

algorithms for BIG 2015: 

 XGBoost (AE) 

 [RF] Random Forest 

 XGBoost with Optimization (OXB) [1] 

The accuracy results produced by HH-SVM are 

compared to those obtained by the following 

algorithms when applied to the NSL-KDD instance: a 

naive Bays tree with a Gaussian distribution [48] [27] 

Fuzzy Classifier (FC) The _Decision Tree (DT) [33] 

Table 6 and Table 7 summarizes the outcomes of 

HH-SVM and the other methods for the BIG 2015 

and NSL-KDD issue situations, respectively. Results 

for BIG 2015 are shown in Table 6 as log loss values, 

as is customary in the literature; in Table 7, however, 

the methods are compared using the accuracy metric. 

A lower number suggests greater performance in log 

loss comparisons, whereas a larger value indicates 

better performance in accuracy comparisons. In both 

tables, the top-performing algorithm was highlighted 

in bold. TABLE 7 shows that compared to AE and 

RF, HH-SVM has the lowest log loss value (TABLE 

6). Accuracy studies comparing HH-SVM with other 

popular methods. 

 

VII. CONCLUSION 
 

As part of this effort, we put forward a hyper-

heuristic SVM optimization framework for tackling 

the challenges of cyber security in the age of big data. 

Specifically, we formalized the SVM con duration 

procedure as a dual-objective optimization issue 

whereby precision and model complexity is seen as 

antagonistic goals. The suggested hyper-heuristic 

framework is effective in resolving this issue of bi-

objective optimization. The Pareto set of optimal 

configurations is approximated by combining the 

benefits of decomposition- and Pareto-based 

techniques, both of which are included into the 

framework. Both Microsoft's malware big data 

classification and anomalous intrusion detection 

serve as benchmarks for testing our methodology. 

Experimental findings show that the suggested 

framework may achieve comparable or even better 

outcomes compared to previous algorithms, proving 

its efficacy and potential. 
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