

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

An method for classifying data with several dimensions
Dr. R. Rambabu, Mr. P S S K Sarma, Mrs. A. Josh Mary

Abstract

There is an unprecedented need for massively parallel machine learning due to the growth of large data and

high-dimensional streaming data. Hardware deployment, rapid processing speed, dimensionality and volume

scaling, learning from streaming data, and automated dimension reduction on high-dimensional data sets are

all requirements for this machine learning. Large-scale machine learning problems of this nature are well

suited for neural networks. This paper presents a fresh approach to large-scale high-dimensional data

handling. This web-based method might manage enormous volumes of big data that are offline and in motion

at the same time. Despite using a lot of Kohonen nets, we only retain a tiny portion of each net's neurons (or

nodes) after training and delete all of the nets thereafter. We utilize Kohonen nets to choose features and

build ensemble classifiers from individual Kohonen neurons. Using Kohonen net-based hardware that is

optimized for enormous parallelism, the strategy should be simple to implement. This is where the computer

lab's initial results were shown.

Keywords: high-dimensional data, online learning, Kohonen networks, feature selection

1 Introduction

2 The introduction of enormous and real-time

data sets has led to considerable changes in

the field of machine learning. Modern

machine learning systems also face a

number of other difficulties, including the

requirement to incorporate new

technologies, automate machine learning

with little human involvement, and learn

rapidly from large datasets. Artificial neural

network-based classical algorithms are

expected to play a significant role in the

current revolutions because to their

numerous advantages, especially when it

comes to addressing the problems presented

by massive data. Neural net methods have

the ability to handle very large datasets

concurrently since many of them rely on

live, incremental learning.

Professor & HOD, Assistant Professor1,2

Department of Computer Science & Engineering,

Rajamahendri Institute of Engineering & Technology, Rajamahendravaram.

 ISSN 2229-6107 www.ijpast.in

 Vol 14,Issuse 2.April 2024

3 3.Instead of needing to laboriously
sample from enormous datasets, we may

solve a multitude of computing

problems simultaneously by employing

this learning method. Moreover, it

makes neural net approaches highly

scalable by allowing them to learn from

all the data. As a result, they can handle

massive data volumes without running

into problems with running out of

computer memory. The ability of

learning (processing) time to scale up

linearly with data volume is another

advantage of incremental learning.

Another advantage of neural network

systems is their utilization of simple,

easily parallelizable computations. Such

algorithms are already being developed

by Oh and Jung (2004) using technology

that enables parallel computations,

whereas Monroe (2014),

4 4Furber et al. (2013) and Poon and Zhou

(2011) are developing hardware that is

even more potent. In this era of large

data and streaming data, neural network

technologies appear to have provided the

perfect basis for machine learning.

This article presents a unique method for

training neural networks that satisfies a

number of requirements: It utilizes an

ensemble of classifiers learned from

selected Kohonen neurons (nodes) from

different Kohonen nets (Kohonen,

2001), addresses the issue of high-

dimensional data, is readily

implementable on hardware, can be

parallelized at different levels of

granularity, and so on. Using streaming

data, we train several Kohonen nets

concurrently to offer some data points

for dimensionality reduction based on

feature selection. Information that has

been

2. Feature separation based

on classes, dimensionality

reduction, and feature

separability index

5 5.Training machine learning models on

high-dimensional data is a major

difficulty. Novel approaches for online

feature selection and feature extraction

for high-dimensional streaming data

have been presented in numerous recent

studies. Yan et al. (2006), Hoi et al.

(2012), Wu et al. (2010), and Law et al.

(2006) are a few instances. However,

none of them are designed to choose

traits based on social classes. Using a

subset of the original characteristics,

Roy et al. (2013) provide a technique

that follows his 1997 conference

advocacy for class-specific classifiers.

However, a method presented by Roy et

al. (2013) is not applicable to streaming

data. A goal of class-specific feature

selection is to identify unique collections

of attributes that may be applied to

It is easy to choose features that minimize the

average distance between individual points within

each class and maximize the average distance

between the data points in each class while

working with a dataset in offline mode.

Computational research has demonstrated the

efficacy of Roy et al. (2013)'s feature selection

and ranking procedure. But since it doesn't really

save any data, that strategy isn't appropriate for

processing streaming data. The suggested

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

approach is conceptually similar to feature

selection, using streaming data to train multiple

Kohonen nets. We overcome the problem of

inadequate data points by training several

Kohonen nets, which each give a tiny subset of

representative data points for their respective

classes. Following the assembly of a group of

representative

1 forms clusters, with the nodes or

neurons that are actively involved in the

network serving as a sample of the

streaming data. Our next step is to use

these examples to classify character

traits.

Think about all the kc courses together.

We base our feature rating on the idea

that a good feature should perform two

things for each class k = 1...kc:(1) reduce

the size of class k patterns and (2)

effectively distinguish between class k

and non-class k patterns. Roy et al.

(2013) use a measure called the

separability index to rank attributes for

each class. It is based on these notions.It

would be interesting to find the mean

separation between feature n patterns

that belong to class k and those that do

not, and to compare them to the mean

separation between patterns in class k
with regard to feature n. While various

distance metrics might be used, the one

utilised by Roy et al. (2013) is the

Euclidean distance.The separability

index may be expressed as Rkn = d.in the

absence ofBy using this separability

index r, Roy et al. (2013) determine the

relative relevance of class k traits; a

bigger ratio denotes a higher rank. Taken

together, this indicator is For the simple

reason that features n with lower dins

condense classes K and L, while features

n with bigger douts make classes L more

different from one other. Consequently,

a bigger ratio rkn for feature n improves

a feature's ability to differentiate class k

from other classes.

1.1 Whyclass-basedfeatureselection?Anexample

GeneNumber Separability Indices byClass
 AML ALL

AML

Features

Good

758 82.53 2.49

1809 75.25 1.85

4680 39.73 2.82

ALL

Features

Good

2288 0.85 114.75

760 0.93 98.76

6182 0.8 34.15

Table2.1–SeparabilityindicesforafewfeaturesintheAMLALLgeneexpressiondataset

To put this strategy to the test, we resolved many high-
dimensional gene expression issues. Predicting AML

or ALL from gene expression data is one such

 ISSN 2229-6107 www.ijpast.in

 Vol 14,Issuse 2.April 2024

difficulty (Golub et al., 1999). The number of genes

(features) is 7,129, and there are 72 samples of data.

Some genes and the separability indices assigned to

them are shown in Table 2.1, organized by class. Genes

75.25, 758, and 4680 all have high separability indices

for the AML class, while genes 1809 and 4680 also

serve as strong predictors of the AML class. But, for

the identical set of genes in the ALL class, the

corresponding separability indices are quite low: 2.49,

1.85, and 2.82, respectively. All things considered,

these three genes do a poor job of predicting the ALL

subtype. In Table 2.1, we can see that three genes—

2288, 760, and 6182—have high separability indices

for the ALL class—114.75, 98.76, and 34.15—and are

therefore excellent predictors of the ALL class. Having

separability scores of 0.85, 0.93, and 0.8, respectively,

indicates that they are poor AML class predictors. Here

we see how class-based feature selection works and

how they may help us comprehend a phenomena.

Selecting features for classes in streaming data using a

Kohonen network

At this point, we provide some notation. Assume an

input pattern in the streaming data is represented by the

N-dimensional vector x, where Xn is the nth element

of the vector. For any integer q from 1 to FS, where FS

is the total number of feature subsets, let FPq represent

the qth feature subset. With q = 1…FS and g = 1…FG,

where FG is the total number of distinct Kohonen net

grid sizes, let KN g be the gthKohonen net of a specific

grid size for the qth feature subset. The entire number

of classes is represented as kc, where k represents a

class. The effective and rapid computation of the

separability indices for high-dimensional data may be

achieved with the use of parallel distributed computing

capabilities like Apache Spark (Franklin 2013). At its

most fundamental level, this is computing parallelism.

Having hardware that implementsKohonen nets allows

for further parallelization of computing at a lower

level.

Suppose that we employ 10 distinct grid sizes (FG =

10) and that we have the computer capacity to generate

500 Kohonen nets in parallel. Then FS would be fifty

(500 divided by ten) and

Each Kohonen net is represented by a number from 1

to 10. It is also assumed that N= 1000 represents the

number of features present in the data stream. There

would therefore be fifty equal subsets of twenty

characteristics each, for a total of one thousand

features. To keep things simple, let's say that features

X1–X20 are part of the first feature partition FP1,

features X21–X40 are part of the second partition FP2,

and so on. The features in the set FP would make up

the input vector for the 1 Kohonen nets KN g, g =

1…10, the features in the set FP 1 would make up the

input vector for the 1 Kohonen nets KN g, g = 1…10,

and so on.

22

So, we'd train ten separate Kohonen nets with varying

grid widths for each feature subset FPq. For

classification problems with few classes, grid sizes

such as 9x9, 8x8, 7x7, etc., should be enough. Grid

sizes need to be greater if there are thousands of

classes. For the sake of speed and efficiency, we are

mostly using feature divisions. When trained in

parallel, these smaller Kohonen nets outperform their

larger counterparts that employ thousands of features.

In order to get diverse representative samples for the

purpose of computing the separability indices, it is

necessary to use varied grid sizes for the same feature

division.

1.2 Letting Kohonen neurons be labeled

It is possible to calculate the separability indices using

a subset, but not a whole subset, of a Kohonen net's

active nodes as training examples. The only neurons

that are considered active are the ones that win. As

soon as the Kohonen nets settle down, we run more

streaming data through to

choose the classes that these nodes should be

moved to. Currently, we do not modify the

weights of the Kohonen nets; instead, we only

record the number of times a certain neuron

was activated by an input pattern that falls

into a given class. Think about the following

situation: We have two classes, A and B.

Based on these two categories, we track the

total number of activations that each active

node has experienced as a result of input

patterns. Think about a single neuron that

receives stimulation from class B patterns 15

times and activation from class A patterns 85

times. At this node, the input patterns may be

classified as class A 85% of the time and class

B 15% of the time. Labeling is simple.

1.3 A feature ranking technique that calculates feature

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

separability indices by class

Section 1: Features are divided into FS subgroups at

random.

Second, for each feature partition, randomly initialize

all Kohonen networks with varying grid sizes

simultaneously.

Thirdly, divide the input vector based on the feature

subsets assigned to each Kohonen net and train all of

the nets simultaneously using streaming data. When

every Kohonen net converges, training should end.

Fourth, to identify the active nodes (winning neurons)

and their class counts, run more streaming data through

the stabilized Kohonen nets without adjusting the

weights.

The fifth step is to assign a class to every active node

(neuron) if the proportion of that node's most active

class is higher than a certain threshold. Activated

neurons with percentage counts lower than the cutoff

should be discarded.

Sixth Step: For each feature partition FPq, where q

ranges from 1 to FS, compile a list of all active nodes

sorted by class.

Step 7: Use the neurons in the active node list that are

left as examples for the classes to compute the

separability indices of the features in each feature

partition FPq, where q = 1…FS.

Measure the features' average separability indices by

iteratively repeating steps 1–7.

Nineth Step: Use Average Separability Indexes to Sort

Features.

Onfeaturecombinationstoexploretobuildclassifiersand

ontheconceptof bucketsoffeatures

After ranking the features, Roy et al. (2013)

combine each feature one at a time, beginning

with the feature that ranks highest. They then

roughly fit a collection of hyperspheres to the

data points to estimate the classification error

rate for each feature combination. According

to Roy et al. (2013), a hypersphere classifier's

error rate is estimated using the feature that

ranks highest.Then, it grabs the top two

Features are rated, and the error rate is

estimated; the top three are then and so on.

After choosing a set of feature combinations

with the lowest error rates, it uses those

feature sets to construct hypersphere

classifiers that are more accurate.We truly
have the capacity to construct independent

classifiers in parallel for various feature

combinations with a parallel distributed

computing system. Using this strategy, we

may construct Kohonen nets with varying

grid sizes for the top feature, top two features,

top three features, and so forth—all of which

can be completed concurrently. Following the

parallel creation of these Kohonen nets, we

are able to choose the feature combinations

with the highest accuracy. Regarding the

computational outcomes

2. Building a Kohonen

neuron ensemble-based

classification system
In this paper, we provide a method for building a

Kohonen-based categorization system. The neurons

used in these Kohonen nets come from a variety of

networks that use varying grid sizes and feature spaces.

Be careful to remember that at the conclusion of this

stage, just a subset of the Kohonen neurons are kept

and the rest of the Kohonen nets are eliminated.

1.2 How to use a majority to allocate neurons (active

nodes) to classes

The last Kohonen nets are learned using streaming

data, and they come in various feature spaces and grid

sizes. The class count percentages at each active node

are obtained in a manner similar to the first phase when

these Kohonen nets converge and are stable. We

continue processing streaming data without modifying

the weights of the Kohonen nets. We repeat the first

step of trimming the active nodes when the class count

percentages at each node are steady. So, nodes that are

 ISSN 2229-6107 www.ijpast.in

 Vol 14,Issuse 2.April 2024

active but have low total counts are removed, while

nodes where a certain class has a strong majority (say,

70%) are kept. Where there is a distinct majority for a

class, we choose neurons that are excellent at what they

do.

1.3 Regarding the Kohonen neuron's radius

The idea of the radius of an active node (neuron) that

governs roughly the border within which it is the

winning neuron forms the basis of our categorization

method. Because our method relies on keeping just the

most active nodes in a Kohonen net and discarding the

inactive ones, this idea is fundamental. We can't find

the winning or optimal neuron for an input pattern after

we remove the remaining nodes from the Kohonen net.

So, the radius is an alternative metric for predicting

which node would come out on top. After setting all

active nodes' radii to zero, we examine further

streaming data to update them and finally find the

radius. We repeat this procedure until all active nodes'

radii are stable. We revise the radius as follows. We

find the distance between the active node and the

streaming input pattern if their classes are similar. If

the distance is more than the current radius, we update

the node's radius. To remove the Kohonen nets, we first

revise the radii of every node that is currently running.

1.4 A method for using streaming data to train the last

batch of Kohonen nets for categorization

First, set the value of bucket j to zero.

Next, build the jth bucket by adding a few additional

top-ranked features by class k to the (j-1)th bucket and

incrementing the number of buckets by one (j = j + 1).

Third, for each pair of features for classes k and j,

randomly initialize final Kohonen nets with varying

grid sizes in parallel using a distributed computing

system. Return to Step 2 to establish additional

Kohonen nets for the remaining feature buckets if their

indices are more than 1. Continue to step 4 if not.

Step 4: Train all Kohonen nets simultaneously using

streaming data and input pattern parts chosen with each

net's feature subset in mind. When every Kohonen net

converges, training should end.

The fifth step is to run more streaming data through the

stabilized Kohonen nets without adjusting the weights.

This will reveal the collection of neurons that are active

for each class k and bucket j. Make sure to collect the

class counts of all active nodes as well. Once the class

percentages for all nodes are constant, you may stop

collecting them.

Step6: If the majority class's class percentage and

absolute class count are more than minimal criteria,

then assign an active node to that class.

Step7: Calculate the radius of each active node by

processing additional streaming data. Once the widths

or radii have stabilized, stop.

Step 8: Remove all non-eligible nodes from each

Kohonen net and keep just the active nodes that meet

the criteria.

1.5 The classifier is not a network of Kohonen nets but

rather an ensemble of dangling neurons.

We use an ensemble of Kohonen neurons trained in

several feature spaces to do classification at the end.

Combining numerous classifiers may often increase

overall performance on a topic, according to studies.

The review and taxonomy of ensemble learning

techniques provided by Rokach (2009) are of high

quality. Many different combinations of base

classifiers are possible for the final prediction. At the

moment, these metrics are used to decide how a test

case is ultimately classified.

a. Maximum Probability—Assign the class of the

ensemble neuron with the greatest confidence (or

probability) to the test case.

b. Minimum Distance—Assign the class of the neuron

that is geographically nearest to the test example.

c. Majority voting—In this method, we find out what a

test example's class is by tallying up the votes of

neurons in each feature space, taking into account both

maximum probability and minimum distance neurons.

2 Outcomes from the Computer

There has been a lot of focus lately on issues with gene

expression. High dimensionality (sometimes including

thousands of features or genes) and sparse training

samples define these types of issues. To evaluate the

efficacy of our approach, we used seven prominent

gene expression datasets. The key features of these

datasets are summarized in Table 5.1. From the

available data, we created two sets: one for training and

one for testing. We used a random selection process to

choose 90% of the data for training and the remaining

20% for testing. The outcomes of this random

allocation were averaged across 50 runs, and they are

shown below. By reading just one input pattern at a

time, our system mimicked online learning.

 No.ofgenes No.ofclasses No.ofexamples

Leukemia(AML-ALL)
(Golubetal.1999)

7129 2 72

CentralNervousSystem 7129 2 60

(Pomeroyetal.2002)
RBCT

(Khanetal.2001)
2308 4 63
rostrate

(Singhetal.2002)
6033 2 102

Table5.1 –Characteristicsofthegeneexpressionproblems

1.2 Configuring Parameters
For every issue that this method resolved, no settings

were adjusted. Although we are currently working on

an implementation using Apache Spark, we did not use

a parallel distributed computing platform for these

studies. Desktops and laptops handled all issues. In

order to solve these issues, we utilized the following

parameter values. Grid sizes of 9x9, 8x8, 7x7, 6x6,

5x5, 4x4, and 3x3 were used for Kohonen nets, with

FG equal to 7. Each feature subset had ten features for

feature selection. The class percentage has to be at least

70% to be considered.

1.2 Findings from the research - Selection of features

The typical amount of characteristics used by this

approach to address gene expression issues is shown in

Table 5.2. It is clear that the suggested approach

performs adequately when narrowing down the

thousands of genes (features) to a manageable number.

Therefore, this approach is effective for dimensionality

reduction via feature selection.

Total no. ofAverage No. of% of features
 attributes featuresused used

Leukemia (AML-

ALL)

7129 20 0.28%

Central

 Nervous

System

7129 10 0.14%

ColonTumor 2000 31 1.55%

SRBCT 2308 54 2.34%

Lymphoma 4026 24 0.60%
Prostrate 6033 74 1.23%

Brain 5597 28 0.50%

Table5.2–AveragenumberoffeaturesusedbytheKohonenneuronensemblemethodforthegeneexpressionproblems.

Brain 5597 42

(Pomeroyetal.2002)

 ISSN 2229-6107 www.ijpast.in

 Vol 14,Issuse 2.April 2024

1.2 Testing the Kohonen Neuron Ensemble Classifier System in the Real World

Here we provide the experimental results of the two-

stage Kohonen ensemble method, which involves

choosing unique features for each class and then

training a cluster of Kohonen neurons to use these

features for classification. We test the algorithm

against various categorization methods using Apache

Spark's MLlib(2015) machine learning module.

Additionally, fifty iterations of Spark testing were

conducted after randomly splitting the data into a

training set and a test set. Several algorithms in Spark's

MLlib have their standard deviations and average error

rates shown in Table 5.3. Both SVMwithSGD and

LogRegWithSGD employ stochastic gradient descent

(SGD) as a classifier training technique. All of these

algorithms were executed with their default parameters

without initial feature selection. While SVMwithSGD

and LogRegWithSGD work well for two-class

problems, they do not provide findings for multiclass

problems in their tables. SRBC, Brain, and Lymphoma.

 Kohonen

ensemble

SVMwithSGD NaiveBayes LogRegWithSGD RandomForest

Leukemia(A

ML-ALL)

1.14(3.96) 4.4(7.0) 10.26(8.0) 10.29(12) 12.8(10)

Central

Nervous
System

28(16.47) 33.25(14) 42.84(11) 36.25(13) 41.26(11)

ColonTumor 10.67(9.48) 17.56(11) 8.33(12) 12(12) 18.67(12)

SRBCT 0.67(3.33) - 7.33(12) - 21.33(18)

Lymphoma 0.67(3.33) - 1.9(3) - 5.67(10)

Prostrate 5.6(7.12) 13.64 (5) 36.97(12) 13.4(10) 19.6(13)

Brain 20.0(11.18) - 18(19) - 47.5(25)

Table5.3–

AveragetesterrorratesandstandarddeviationsforvariousclassificationalgorithmsofApacheSparkMLlib(2015).

2. Final Thoughts

We provide a new method for learning from high-

dimensional data that is both static and dynamic in this

article. Because it is an internet solution, data storage

would need to be streamed. There is no need for online

methods to have access to all of the training data at

once, and the learning (processing) time scales up

linearly with data volume, making them very scalable.

On top of that, they don't have to choose extract data in

order to get insight from all of it. This method has the

potential to use several levels of parallelization. It is

easily parallelizable on distributed computing systems

like Apache Spark and can even be implemented on the

neural hardware's level of massively parallel

computing. Internet of Things (IoT) applications that

prioritize learning and reacting to high-speed

streaming data would greatly benefit from a neural

hardware implementation. Moreover, data saved may

be processed rapidly via the use of brain circuitry. Our

experiments also show that the method works wonders

when it comes to reducing the dimensionality of a high-

dimensional problem.

List of Sources

In 2004, Oh and Jung published a research.

building neural networks using GPUs. This paper

may be found on pages 1311–1314 of the journal

Pattern Recognition, published in June 2013.

Danny Monroe in the year 2014.The era of

neuromorphic computing is going to explode. The

article may be found in Communications of the

ACM journal, volume 57, number 6, pages 13–15.

2011 saw the writing of Poon and Zhou.Large-

scale neural networks with neuromorphic silicon

neurons: benefits and drawbacks. Frontiers in

neurological research: 5, 5. The study team

includes Furber, Steve; Lester, David; Plana,

Luis; Jim Garside; Steve Temple; Andrew Brown;

and Eustace Painkras. A overview of the

SpiNNaker framework.The piece appeared in

December 2013 on pages 2454–2467 in IEEE

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

Transactions on Computers, volume 62,

number 12. Takko wrote this in 2001.

Automata-based mapping (Volume 30). The

publishing house is Springer.

The work was published in 2013 by Roy, A.,
Mackin, P., and Mukhopadhyay, S. Class-

Specific Feature Selection Strategies,

Automated Learning, and Pattern Selection

Methods (Neural Networks, 41, 113–129).

Yan et al. published an essay in 2006. They

were joined by Yan, Zhang, Liu, Yang, and

Cheng. using a supervised, scalable method to

minimize dimensionality in streaming data...

2042–2065 is the publication date; volume:

176, issue: 14. Hoi, S. C., Jin, R., Huang, J.,

and Zhao, P. (2012).using online searches to

extract attributes from large datasets.The first

international conference on big data, streams,

and heterogeneous source mining, articles

93–100: algorithms,Law and Jain released a

book in 2006. reducing nonlinear

dimensionality progressively by the use of

manifold learning. The IEEE Transactions on

Pattern Analysis and Machine Intelligence,

volume 28, number 3, pages 377–391,

published this work. Li (2006), Jiang T.,

Zhang K., and Li X. R. Determining the most

reliable and effective margin criterion for

feature extraction... IEEE Transactions on

Neural Networks, Volume 17, Number 1,

Pages 157–165.(Oct. 2013) Franklin, M.

From now on, here is where the Berkeley

Data Analytics Stack will go. The relevant

article may be found on pages two and three

of the 2013 IEEE International Conference on

Big Data. IEEE.

The work by Golub, Slonim, Tamayo, and

associates was published in 1999. Molecular

