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Abstract 

There is an unprecedented need for massively parallel machine learning due to the growth of large data and 

high-dimensional streaming data. Hardware deployment, rapid processing speed, dimensionality and volume 

scaling, learning from streaming data, and automated dimension reduction on high-dimensional data sets are 

all requirements for this machine learning. Large-scale machine learning problems of this nature are well 

suited for neural networks. This paper presents a fresh approach to large-scale high-dimensional data 

handling. This web-based method might manage enormous volumes of big data that are offline and in motion 

at the same time. Despite using a lot of Kohonen nets, we only retain a tiny portion of each net's neurons (or 

nodes) after training and delete all of the nets thereafter. We utilize Kohonen nets to choose features and 

build ensemble classifiers from individual Kohonen neurons. Using Kohonen net-based hardware that is 

optimized for enormous parallelism, the strategy should be simple to implement. This is where the computer 

lab's initial results were shown. 
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1 Introduction 

2 The introduction of enormous and real-time 

data sets has led to considerable changes in 

the field of machine learning. Modern 

machine learning systems also face a 

number of other difficulties, including the 

requirement to incorporate new 

technologies, automate machine learning 

with little human involvement, and learn 

rapidly from large datasets. Artificial neural 

network-based classical algorithms are 

expected to play a significant role in the 

current revolutions because to their 

numerous advantages, especially when it 

comes to addressing the problems presented 

by massive data. Neural net methods have 

the ability to handle very large datasets 

concurrently since many of them rely on 

live, incremental learning.  
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3 3.Instead of needing to laboriously 
sample from enormous datasets, we may 

solve a multitude of computing 

problems simultaneously by employing 

this learning method. Moreover, it 

makes neural net approaches highly 

scalable by allowing them to learn from 

all the data. As a result, they can handle 

massive data volumes without running 

into problems with running out of 

computer memory. The ability of 

learning (processing) time to scale up 

linearly with data volume is another 

advantage of incremental learning. 

Another advantage of neural network 

systems is their utilization of simple, 

easily parallelizable computations. Such 

algorithms are already being developed 

by Oh and Jung (2004) using technology 

that enables parallel computations, 

whereas Monroe (2014),  

4 4Furber et al. (2013) and Poon and Zhou 

(2011) are developing hardware that is 

even more potent. In this era of large 

data and streaming data, neural network 

technologies appear to have provided the 

perfect basis for machine learning.  

 

This article presents a unique method for 

training neural networks that satisfies a 

number of requirements: It utilizes an 

ensemble of classifiers learned from 

selected Kohonen neurons (nodes) from 

different Kohonen nets (Kohonen, 

2001), addresses the issue of high-

dimensional data, is readily 

implementable on hardware, can be 

parallelized at different levels of 

granularity, and so on. Using streaming 

data, we train several Kohonen nets 

concurrently to offer some data points 

for dimensionality reduction based on 

feature selection. Information that has 

been 
 

2. Feature separation based 

on classes, dimensionality 

reduction, and feature 

separability index 

 

5 5.Training machine learning models on 

high-dimensional data is a major 

difficulty. Novel approaches for online 

feature selection and feature extraction 

for high-dimensional streaming data 

have been presented in numerous recent 

studies. Yan et al. (2006), Hoi et al. 

(2012), Wu et al. (2010), and Law et al. 

(2006) are a few instances. However, 

none of them are designed to choose 

traits based on social classes. Using a 

subset of the original characteristics, 

Roy et al. (2013) provide a technique 

that follows his 1997 conference 

advocacy for class-specific classifiers. 

However, a method presented by Roy et 

al. (2013) is not applicable to streaming 

data. A goal of class-specific feature 

selection is to identify unique collections 

of attributes that may be applied to 

  

 
It is easy to choose features that minimize the 

average distance between individual points within 

each class and maximize the average distance 

between the data points in each class while 

working with a dataset in offline mode. 

Computational research has demonstrated the 

efficacy of Roy et al. (2013)'s feature selection 

and ranking procedure. But since it doesn't really 

save any data, that strategy isn't appropriate for 

processing streaming data. The suggested 



             
 

 

 

                              ISSN 2229-6107 www.ijpast.in  

                                                Vol 8,Issuse 1.Jan 2018                      

 

approach is conceptually similar to feature 

selection, using streaming data to train multiple 

Kohonen nets. We overcome the problem of 

inadequate data points by training several 

Kohonen nets, which each give a tiny subset of 

representative data points for their respective 

classes. Following the assembly of a group of 

representative 

1  forms clusters, with the nodes or 

neurons that are actively involved in the 

network serving as a sample of the 

streaming data. Our next step is to use 

these examples to classify character 

traits. 

Think about all the kc courses together. 

We base our feature rating on the idea 

that a good feature should perform two 

things for each class k = 1...kc:(1) reduce 

the size of class k patterns and (2) 

effectively distinguish between class k 

and non-class k patterns. Roy et al. 

(2013) use a measure called the 

separability index to rank attributes for 

each class. It is based on these notions.It 

would be interesting to find the mean 

separation between feature n patterns 

that belong to class k and those that do 

not, and to compare them to the mean 

separation between patterns in class k 
with regard to feature n. While various 

distance metrics might be used, the one 

utilised by Roy et al. (2013) is the 

Euclidean distance.The separability 

index may be expressed as Rkn = d.in the 

absence ofBy using this separability 

index r, Roy et al. (2013) determine the 

relative relevance of class k traits; a 

bigger ratio denotes a higher rank. Taken 

together, this indicator is For the simple 

reason that features n with lower dins 

condense classes K and L, while features 

n with bigger douts make classes L more 

different from one other. Consequently, 

a bigger ratio rkn for feature n improves 

a feature's ability to differentiate class k 

from other classes.  

1.1 Whyclass-basedfeatureselection?Anexample 

 

GeneNumber Separability Indices byClass 
 AML ALL 

AML 

Features 

Good   

758  82.53 2.49 

1809  75.25 1.85 

4680  39.73 2.82 

ALL 

Features 

Good   

2288  0.85 114.75 

760  0.93 98.76 

6182  0.8 34.15 

Table2.1–SeparabilityindicesforafewfeaturesintheAMLALLgeneexpressiondataset 
 

To put this strategy to the test, we resolved many high-
dimensional gene expression issues. Predicting AML 

or ALL from gene expression data is one such 
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difficulty (Golub et al., 1999). The number of genes 

(features) is 7,129, and there are 72 samples of data. 

Some genes and the separability indices assigned to 

them are shown in Table 2.1, organized by class. Genes 

75.25, 758, and 4680 all have high separability indices 

for the AML class, while genes 1809 and 4680 also 

serve as strong predictors of the AML class. But, for 

the identical set of genes in the ALL class, the 

corresponding separability indices are quite low: 2.49, 

1.85, and 2.82, respectively. All things considered, 

these three genes do a poor job of predicting the ALL 

subtype. In Table 2.1, we can see that three genes—

2288, 760, and 6182—have high separability indices 

for the ALL class—114.75, 98.76, and 34.15—and are 

therefore excellent predictors of the ALL class. Having 

separability scores of 0.85, 0.93, and 0.8, respectively, 

indicates that they are poor AML class predictors. Here 

we see how class-based feature selection works and 

how they may help us comprehend a phenomena. 

 

Selecting features for classes in streaming data using a 

Kohonen network 

At this point, we provide some notation. Assume an 

input pattern in the streaming data is represented by the 

N-dimensional vector x, where Xn is the nth element 

of the vector. For any integer q from 1 to FS, where FS 

is the total number of feature subsets, let FPq represent 

the qth feature subset. With q = 1…FS and g = 1…FG, 

where FG is the total number of distinct Kohonen net 

grid sizes, let KN g be the gthKohonen net of a specific 

grid size for the qth feature subset. The entire number 

of classes is represented as kc, where k represents a 

class. The effective and rapid computation of the 

separability indices for high-dimensional data may be 

achieved with the use of parallel distributed computing 

capabilities like Apache Spark (Franklin 2013). At its 

most fundamental level, this is computing parallelism. 

Having hardware that implementsKohonen nets allows 

for further parallelization of computing at a lower 

level. 

Suppose that we employ 10 distinct grid sizes (FG = 

10) and that we have the computer capacity to generate 

500 Kohonen nets in parallel. Then FS would be fifty 

(500 divided by ten) and 

 

Each Kohonen net is represented by a number from 1 

to 10. It is also assumed that N= 1000 represents the 

number of features present in the data stream. There 

would therefore be fifty equal subsets of twenty 

characteristics each, for a total of one thousand 

features. To keep things simple, let's say that features 

X1–X20 are part of the first feature partition FP1, 

features X21–X40 are part of the second partition FP2, 

and so on. The features in the set FP would make up 

the input vector for the 1 Kohonen nets KN g, g = 

1…10, the features in the set FP 1 would make up the 

input vector for the 1 Kohonen nets KN g, g = 1…10, 

and so on. 

22 

So, we'd train ten separate Kohonen nets with varying 

grid widths for each feature subset FPq. For 

classification problems with few classes, grid sizes 

such as 9x9, 8x8, 7x7, etc., should be enough. Grid 

sizes need to be greater if there are thousands of 

classes. For the sake of speed and efficiency, we are 

mostly using feature divisions. When trained in 

parallel, these smaller Kohonen nets outperform their 

larger counterparts that employ thousands of features. 

In order to get diverse representative samples for the 

purpose of computing the separability indices, it is 

necessary to use varied grid sizes for the same feature 

division. 

1.2 Letting Kohonen neurons be labeled 

 

It is possible to calculate the separability indices using 

a subset, but not a whole subset, of a Kohonen net's 

active nodes as training examples. The only neurons 

that are considered active are the ones that win. As 

soon as the Kohonen nets settle down, we run more 

streaming data through to 

 

choose the classes that these nodes should be 

moved to. Currently, we do not modify the 

weights of the Kohonen nets; instead, we only 

record the number of times a certain neuron 

was activated by an input pattern that falls 

into a given class. Think about the following 

situation: We have two classes, A and B. 

Based on these two categories, we track the 

total number of activations that each active 

node has experienced as a result of input 

patterns. Think about a single neuron that 

receives stimulation from class B patterns 15 

times and activation from class A patterns 85 

times. At this node, the input patterns may be 

classified as class A 85% of the time and class 

B 15% of the time. Labeling is simple. 
 

1.3 A feature ranking technique that calculates feature 
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separability indices by class 

 

Section 1: Features are divided into FS subgroups at 

random. 

Second, for each feature partition, randomly initialize 

all Kohonen networks with varying grid sizes 

simultaneously. 

Thirdly, divide the input vector based on the feature 

subsets assigned to each Kohonen net and train all of 

the nets simultaneously using streaming data. When 

every Kohonen net converges, training should end. 

Fourth, to identify the active nodes (winning neurons) 

and their class counts, run more streaming data through 

the stabilized Kohonen nets without adjusting the 

weights. 

The fifth step is to assign a class to every active node 

(neuron) if the proportion of that node's most active 

class is higher than a certain threshold. Activated 

neurons with percentage counts lower than the cutoff 

should be discarded. 

Sixth Step: For each feature partition FPq, where q 

ranges from 1 to FS, compile a list of all active nodes 

sorted by class. 

Step 7: Use the neurons in the active node list that are 

left as examples for the classes to compute the 

separability indices of the features in each feature 

partition FPq, where q = 1…FS. 

Measure the features' average separability indices by 

iteratively repeating steps 1–7. 

Nineth Step: Use Average Separability Indexes to Sort 

Features. 

 

Onfeaturecombinationstoexploretobuildclassifiersand

ontheconceptof bucketsoffeatures 

 
After ranking the features, Roy et al. (2013) 

combine each feature one at a time, beginning 

with the feature that ranks highest. They then 

roughly fit a collection of hyperspheres to the 

data points to estimate the classification error 

rate for each feature combination. According 

to Roy et al. (2013), a hypersphere classifier's 

error rate is estimated using the feature that 

ranks highest.Then, it grabs the top two  

Features are rated, and the error rate is 

estimated; the top three are then and so on. 

After choosing a set of feature combinations 

with the lowest error rates, it uses those 

feature sets to construct hypersphere 

classifiers that are more accurate.We truly 
have the capacity to construct independent 

classifiers in parallel for various feature 

combinations with a parallel distributed 

computing system. Using this strategy, we 

may construct Kohonen nets with varying 

grid sizes for the top feature, top two features, 

top three features, and so forth—all of which 

can be completed concurrently. Following the 

parallel creation of these Kohonen nets, we 

are able to choose the feature combinations 

with the highest accuracy. Regarding the 

computational outcomes 

2. Building a Kohonen 

neuron ensemble-based 

classification system 
In this paper, we provide a method for building a 

Kohonen-based categorization system. The neurons 

used in these Kohonen nets come from a variety of 

networks that use varying grid sizes and feature spaces. 

Be careful to remember that at the conclusion of this 

stage, just a subset of the Kohonen neurons are kept 

and the rest of the Kohonen nets are eliminated. 

 

1.2 How to use a majority to allocate neurons (active 

nodes) to classes 

 

 

The last Kohonen nets are learned using streaming 

data, and they come in various feature spaces and grid 

sizes. The class count percentages at each active node 

are obtained in a manner similar to the first phase when 

these Kohonen nets converge and are stable. We 

continue processing streaming data without modifying 

the weights of the Kohonen nets. We repeat the first 

step of trimming the active nodes when the class count 

percentages at each node are steady. So, nodes that are 
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active but have low total counts are removed, while 

nodes where a certain class has a strong majority (say, 

70%) are kept. Where there is a distinct majority for a 

class, we choose neurons that are excellent at what they 

do. 

1.3 Regarding the Kohonen neuron's radius 

 

The idea of the radius of an active node (neuron) that 

governs roughly the border within which it is the 

winning neuron forms the basis of our categorization 

method. Because our method relies on keeping just the 

most active nodes in a Kohonen net and discarding the 

inactive ones, this idea is fundamental. We can't find 

the winning or optimal neuron for an input pattern after 

we remove the remaining nodes from the Kohonen net. 

So, the radius is an alternative metric for predicting 

which node would come out on top. After setting all 

active nodes' radii to zero, we examine further 

streaming data to update them and finally find the 

radius. We repeat this procedure until all active nodes' 

radii are stable. We revise the radius as follows. We 

find the distance between the active node and the 

streaming input pattern if their classes are similar. If 

the distance is more than the current radius, we update 

the node's radius. To remove the Kohonen nets, we first 

revise the radii of every node that is currently running. 

 

1.4 A method for using streaming data to train the last 

batch of Kohonen nets for categorization 

 

First, set the value of bucket j to zero. 

Next, build the jth bucket by adding a few additional 

top-ranked features by class k to the (j-1)th bucket and 

incrementing the number of buckets by one (j = j + 1). 

Third, for each pair of features for classes k and j, 

randomly initialize final Kohonen nets with varying 

grid sizes in parallel using a distributed computing 

system. Return to Step 2 to establish additional 

Kohonen nets for the remaining feature buckets if their 

indices are more than 1. Continue to step 4 if not. 

Step 4: Train all Kohonen nets simultaneously using 

streaming data and input pattern parts chosen with each 

net's feature subset in mind. When every Kohonen net 

converges, training should end. 

The fifth step is to run more streaming data through the 

stabilized Kohonen nets without adjusting the weights. 

This will reveal the collection of neurons that are active 

for each class k and bucket j. Make sure to collect the 

class counts of all active nodes as well. Once the class 

percentages for all nodes are constant, you may stop 

collecting them. 

Step6: If the majority class's class percentage and 

absolute class count are more than minimal criteria, 

then assign an active node to that class. 

Step7: Calculate the radius of each active node by 

processing additional streaming data. Once the widths 

or radii have stabilized, stop. 

Step 8: Remove all non-eligible nodes from each 

Kohonen net and keep just the active nodes that meet 

the criteria. 

 

1.5 The classifier is not a network of Kohonen nets but 

rather an ensemble of dangling neurons. 

 

We use an ensemble of Kohonen neurons trained in 

several feature spaces to do classification at the end. 

Combining numerous classifiers may often increase 

overall performance on a topic, according to studies. 

The review and taxonomy of ensemble learning 

techniques provided by Rokach (2009) are of high 

quality. Many different combinations of base 

classifiers are possible for the final prediction. At the 

moment, these metrics are used to decide how a test 

case is ultimately classified. 

a. Maximum Probability—Assign the class of the 

ensemble neuron with the greatest confidence (or 

probability) to the test case. 

b. Minimum Distance—Assign the class of the neuron 

that is geographically nearest to the test example. 

c. Majority voting—In this method, we find out what a 

test example's class is by tallying up the votes of 

neurons in each feature space, taking into account both 

maximum probability and minimum distance neurons. 

 

2 Outcomes from the Computer 

 

There has been a lot of focus lately on issues with gene 

expression. High dimensionality (sometimes including 

thousands of features or genes) and sparse training 

samples define these types of issues. To evaluate the 

efficacy of our approach, we used seven prominent 

gene expression datasets. The key features of these 

datasets are summarized in Table 5.1. From the 

available data, we created two sets: one for training and 

one for testing. We used a random selection process to 

choose 90% of the data for training and the remaining 

20% for testing. The outcomes of this random 

allocation were averaged across 50 runs, and they are 

shown below. By reading just one input pattern at a 

time, our system mimicked online learning. 

 



 

 

 

 

 

 

 

 

 

 

 
 No.ofgenes No.ofclasses No.ofexamples 

Leukemia(AML-ALL) 
(Golubetal.1999) 

7129 2 72 

CentralNervousSystem 7129 2 60 

(Pomeroyetal.2002) 
RBCT 

(Khanetal.2001) 
2308 4 63 
rostrate 

(Singhetal.2002) 
6033 2 102 

 
 

Table5.1 –Characteristicsofthegeneexpressionproblems 

 
1.2 Configuring Parameters 
For every issue that this method resolved, no settings 

were adjusted. Although we are currently working on 

an implementation using Apache Spark, we did not use 

a parallel distributed computing platform for these 

studies. Desktops and laptops handled all issues. In 

order to solve these issues, we utilized the following 

parameter values. Grid sizes of 9x9, 8x8, 7x7, 6x6, 

5x5, 4x4, and 3x3 were used for Kohonen nets, with 

FG equal to 7. Each feature subset had ten features for 

feature selection. The class percentage has to be at least 

70% to be considered. 

 

1.2 Findings from the research - Selection of features 

The typical amount of characteristics used by this 

approach to address gene expression issues is shown in 

Table 5.2. It is clear that the suggested approach 

performs adequately when narrowing down the 

thousands of genes (features) to a manageable number. 

Therefore, this approach is effective for dimensionality 

reduction via feature selection. 

 

 

 
 

Total no. ofAverage No. of% of features 
 attributes featuresused used 

Leukemia (AML-

ALL) 

7129 20 0.28% 

Central

 Nervous

System 

7129 10 0.14% 

ColonTumor 2000 31 1.55% 

SRBCT 2308 54 2.34% 

Lymphoma 4026 24 0.60% 
Prostrate 6033 74 1.23% 

Brain 5597 28 0.50% 
 

Table5.2–AveragenumberoffeaturesusedbytheKohonenneuronensemblemethodforthegeneexpressionproblems. 
 

Brain 5597  42 

(Pomeroyetal.2002) 
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1.2 Testing the Kohonen Neuron Ensemble Classifier System in the Real World 

 

Here we provide the experimental results of the two-

stage Kohonen ensemble method, which involves 

choosing unique features for each class and then 

training a cluster of Kohonen neurons to use these 

features for classification. We test the algorithm 

against various categorization methods using Apache 

Spark's MLlib(2015) machine learning module. 

Additionally, fifty iterations of Spark testing were 

conducted after randomly splitting the data into a 

training set and a test set. Several algorithms in Spark's 

MLlib have their standard deviations and average error 

rates shown in Table 5.3. Both SVMwithSGD and 

LogRegWithSGD employ stochastic gradient descent 

(SGD) as a classifier training technique. All of these 

algorithms were executed with their default parameters 

without initial feature selection. While SVMwithSGD 

and LogRegWithSGD work well for two-class 

problems, they do not provide findings for multiclass 

problems in their tables. SRBC, Brain, and Lymphoma. 

 

 
 Kohonen

ensemble 

SVMwithSGD NaiveBayes LogRegWithSGD RandomForest 

Leukemia(A

ML-ALL) 

1.14(3.96) 4.4(7.0) 10.26(8.0) 10.29(12) 12.8(10) 

Central

Nervous 
System 

28(16.47) 33.25(14) 42.84(11) 36.25(13) 41.26(11) 

ColonTumor 10.67(9.48) 17.56(11) 8.33(12) 12(12) 18.67(12) 

SRBCT 0.67(3.33) - 7.33(12) - 21.33(18) 

Lymphoma 0.67(3.33) - 1.9(3) - 5.67(10) 

Prostrate 5.6(7.12) 13.64 (5) 36.97(12) 13.4(10) 19.6(13) 

Brain 20.0(11.18) - 18(19) - 47.5(25) 

 

Table5.3–

AveragetesterrorratesandstandarddeviationsforvariousclassificationalgorithmsofApacheSparkMLlib(2015). 
 

2. Final Thoughts 

We provide a new method for learning from high-

dimensional data that is both static and dynamic in this 

article. Because it is an internet solution, data storage 

would need to be streamed. There is no need for online 

methods to have access to all of the training data at 

once, and the learning (processing) time scales up 

linearly with data volume, making them very scalable. 

On top of that, they don't have to choose extract data in 

order to get insight from all of it. This method has the 

potential to use several levels of parallelization. It is 

easily parallelizable on distributed computing systems 

like Apache Spark and can even be implemented on the 

neural hardware's level of massively parallel 

computing. Internet of Things (IoT) applications that 

prioritize learning and reacting to high-speed 

streaming data would greatly benefit from a neural 

hardware implementation. Moreover, data saved may 

be processed rapidly via the use of brain circuitry. Our 

experiments also show that the method works wonders 

when it comes to reducing the dimensionality of a high-

dimensional problem. 
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